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1 APF extension

Throughout this talk, we always assume K is a complete discrete valuation field with perfect

residue field k of characteristic p. We always fix a separable closure K̄ of K. For any separable

extension L/K, let OL be the ring of integers, kL the residue field of L, νL the normalised valuation

on L (if L/K is finite) and GL the absolute Galois group of L. Let UK = O×
K and for any n ≥ 1,

UnK = {x ∈ UK | νK(x− 1) ≥ n}.

1.1 Quick review on ramification theory

Let us recall some basic facts on ramification theory. A good reference is Serre’s book [Se],

espectially chatper IV.

Definition 1.1. Let L/K be a finite separable extension and for any 1 ̸= σ : L→ K̄ in HomK(L, K̄)

(where 1 denotes the natural inclusion L ⊂ K̄), define

iL(σ) = min
x∈OL

(νL(σ(x)− x)− 1) (iL(1) := +∞).

Equivalently, for any fixed uniformizer π of L,

iL(σ) =

 νL(
σ(π)
π − 1), if σ acts on kL trivially

−1, else
.

Lemma 1.2 ([Se, p63,Prop 3]). Let L′/K be a finite separable extension of L/K. Then

iL(σ) + 1 =
1

eL′/L

∑
σ′ 7→σ

(iL′(σ′) + 1),

where σ′ runs over the subset of liftings of σ in HomK(L′, K̄).

A basic tool to study ramification theory is Herbrand’s ϕ-function (and ψ-function).

Definition 1.3. Let L/K be a finite separable extension. For any t ≥ −1, put

γt := ♯{σ ∈ HomK(L, K̄) | iL(σ) ≥ t}.

Then Herbrand’s ϕ-function is defined as

ϕL/K(u) =

 u, −1 ≤ u ≤ 0∫ u
0
γt
γ0
dt, u ≥ 0

.

This is a strictly increasing function and we define Herbrand’s ψ-function by ψL/K = ϕ−1
L/K .

Lemma 1.4 ([Se, p74, Prop 15, Lem 4]). Let K ⊂ L ⊂ L′ be finite separable extensions. Then

(1) ϕL′/K = ϕL/K ◦ ϕL′/L and ψL′/K = ψL′/L ◦ ψL/K .
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(2) For any σ ∈ HomK(L, K̄), let j(σ) = supσ′ 7→σ iL′(σ′), then iL(σ) = ϕL′/L(j(σ)).

Definition 1.5. Let L/K be a finite Galois extension. For any u ≥ −1, define Gal(L/K)u := {σ ∈

Gal(L/K) | iL(σ) ≥ u} and Gal(L/K)u := Gal(L/K)ψL/K(u). DefineGuK = lim←−L/K finite Galois
Gal(L/K)u.

Lemma 1.6 ([Se, p74, Prop 14]). Let L/K be a finite Galois extension and F/K be a subextension.

Then for any u ≥ −1,

(1) Gal(L/F )ψF/K(u) = Gal(L/F ) ∩Gal(L/K)u;

(2) If moreover F/K is Galois, then Gal(F/K)u = Gal(L/K)uGal(L/F )/Gal(L/F ).

Remark 1.1. The function u 7→ GuK is semi-continuous: For any u ≥ −1, G<uK := ∩v<uGvK =

GuK . However, G>uK := ∪v>uGvK may be not GuK . For example, G0
K = Gal(K̄/Kur) while G>0

K =

Gal(K̄/Ktame).

1.2 APF extension

Definition 1.7. An extension L/K in K̄ is called arithmetic profinite (APF) if for any u ≥ −1,

the group GuKGL is open in GK . In this case, we define i(L/K) := sup{i ≥ −1 | GiKGL = GK}. For

any APF extension L/K, we can also define Herbrand ψ-function by

ψL/K(u) =

 u, −1 ≤ u ≤ 0∫ u
0 [G

0
K : G0

LG
t
K ]dt, u ≥ 0

.

An APF extension is called strictly APF (SAPF) if

lim inf
u→+∞

ψL/K(u)

[G0
K : G0

LG
u
K ]

> 0.

When i(L/K) > 0, we define

c(L/K) = inf
u≥i(L/K)

ψL/K(u)

[G0
K : G0

LG
u
K ]
.

Lemma 1.8. (1) Let L/K be a finite separable extension. Then for any σ ∈ GuK , we have iL(σ) ≥

ψL/K(u).

(2) Let L/K be a finite separable extension. Then for any σ ∈ GK , we have iL(σ) ≥ ψL/K(i(L/K)).

Proof. For (1): Let L′/K be the Galois closure of L/K. Then σ ∈ Gal(L′/K)u = Gal(L′/K)ψL′/K(u).

Define j(σ) = sup{iL′(τ) | τ ∈ Gal(L′/K), τ|L = σ|L}. Then by Lemma 1.4,

iL(σ) ≥ ϕL′/L(j(σ)) ≥ ϕL′/L(iL′(σ)) ≥ ϕL′/L(ψL′/K(u)) = ψL/K(u).

For (2): Since G
i(L/K)
K GL = GK , one can find a τ ∈ Gi(L/K)

K such that τ|L = σ|L. By (1), we have

iL(σ) = iL(τ) ≥ ψL/K(i(L/K)).
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Example 1.9. (1) Any finite separable extension L/K is (S)APF.

(2) Let L/K be a separable extension with K0 (resp. K1) the maximal unramified (resp. tamely

ramified) subextenion of K in L. Then L/K is (S)APF if and only if Ki/K is finite (i.e. G0
KGL

(G>0
K GL) is open) and L/Ki is (S)APF.

(3) If L/K is APF with i(L/K) > 0, then it is SAPF if and only if c(L/K) > 0.

Example 1.10 (A conjecture of Serre, confirmed by Sen). Let L/K be a totally ramified Galois

extension with Gal(L/K) a p-adic Lie group (e.g. Lubin–Tate extension). Then L/K is SAPF.

Proposition 1.11. Let K ⊂ L ⊂M be separable extensions.

(1) If L/K is finite, then M/K is (S)APF if and only if M/L is.

(2) If M/L is finite, then L/K is (S)APF if and only if M/K is.

(3) If M/K is (S)APF, then so is L/K.

(4) IfM/K is APF, then i(L/K) ≥ i(M/K). If moreover L/K is finite, then i(M/L) ≥ ψL/K(i(M/K)).

(5) If M/K is APF and i(M/K) > 0, then c(L/K) ≥ c(M/K). If moreover L/K is finite, then

c(M/L) ≥ c(M/K).

Proof. We only prove (3)-(5) here while the (1) and (2) are easy to believe in.

The APF part of (3) follows from that [GK : GuKGL] ≤ [GK : GuKGM ] and SAPF part will follow

from (5) together with Example 1.9 (3).

For (4): Put i0 = i(M/K). Since

GK = GMG
i0
K ⊂ GLG

i0
K ⊂ GK ,

we have i(L/K) ≥ i0. Now assume moreover L/K is finite, then by Lemma 1.6 (1), we have

G
ψL/K(u)

L = GL ∩GuK . So we get

G
ψL/K(i0)

L GM = (GL ∩Gi0K)GM = GL ∩Gi0KGM = GM ;

So i(M/L) ≥ ψL/K(i0).

For (5): Note that for any t ≥ 0, we have

[G0
K : GtKG

0
M ] = [G0

K : GtKG
0
L][G

t
KG

0
L : GtKG

0
M ] = [G0

K : GtKG
0
L][G

0
L : (GtK ∩G0

L)G
0
M ].

So we get

ψM/K(u) =

∫ u

0
[G0

K : GtKG
0
M ]dt ≤

∫ u

0
[G0

K : GtKG
0
L]dt · [G0

L : (GuK ∩G0
L)G

0
M ]

=
[G0

K : GuKG
0
M ]

[G0
K : GuKG

0
L]

∫ u

0
[G0

K : GtKG
0
L]dt.
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In other words,
∫ u
0 [G0

K :Gt
KG

0
M ]dt

[G0
K :Gu

KG
0
M ]

≤
∫ u
0 [G0

K :Gt
KG

0
L]dt

[G0
K :Gu

KG
0
L]

. Since i(L/K) ≥ i(M/K), we get

c(M/K) = inf
u≥i(M/K)

∫ u
0 [G

0
K : GtKG

0
M ]dt

[G0
K : GuKG

0
M ]

≤ inf
u≥i(L/K)

∫ u
0 [G

0
K : GtKG

0
L]dt

[G0
K : GuKG

0
L]

= c(L/K).

If moreover L/K is finite, then

[G0
K : GtKG

0
M ] = [G0

K : GtKG
0
L][G

0
L : (GtK ∩G0

L)G
0
M ] = [G0

K : GtKG
0
L][G

0
L : G

ψL/K(t)

L G0
M ].

So [G0
K : GuKG

0
M ] ≥ [G0

L : G
ψL/K(u)

L G0
M ]. Since ψM/K(u) = ψM/L(ψL/K(u)), we get

ψM/K(u)

[G0
K : GuKG

0
M ]
≤

ψM/L(ψL/K(u))

[G0
L : G

ψL/K(u)

L G0
M ]
.

Since i(M/L) ≥ ψL/K(i(M/K)), we get

c(M/K) = inf
u≥i(M/K)

ψM/K(u)

[G0
K : GuKG

0
M ]
≤ inf

v≥ψL/K(i(M/K))

ψM/L(v)

[G0
L : GvLG

0
M ]
≤ inf

v≥i(M/L)

ψM/L(v)

[G0
L : GvLG

0
M ]

= c(M/L).

1.3 Elementary extension

Definition 1.12. Let i > 0 be a rational number. An finite separable extension L/K is called

elementary of level i, if GiKGL = GK and G>iK GL = GL. In this case, L/K is totally widely

ramified with degree [L : K] a power of p and Herbrand ψ-function

ψL/K(u) =

 u, −1 ≤ u ≤ i

i+ [L : K](u− i), u ≥ i
.

Let L/K be an infinite APF extension and B := {b > 0 | GbKGL ̸= G>bK GL}. Then B is infinite

(as [L : K] = +∞) and for any x ≥ 0, B ∩ [−1, x] is a finite set (as L/K is APF). So we may write

B = {b1 ≤ b2 ≤ · · · }.

For any n ≥ 1, let Kn = (K̄)G
bn
K GL and in = ψL/K(bn). Let K0 be the maximal unramified

subextension of K in L. Then we have

(1) For any n ≥ 0, Kn/K is finite and L = ∪n≥0Kn.

(2) K1/K is the maximal tamely ramified subextension of K in L.

(3) For any n ≥ 1, Kn+1/Kn is an elementary extension of level in.

(4) c(L/K1) = infn≥1
in

[Kn+1:K] .
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We call K0 ⊂ K1 ⊂ · · · the elementary chain of infinite APF extension L/K.

Conversely, let K0 ⊂ K1 ⊂ · · · be a chain of finite separable extensions of K such that

(1) K0/K is unramified and K1/K0 is totally tamely ramified;

(2) For any n ≥ 1, Kn+1/Kn is an elementary extension of level in > 0

(3) L := ∪n≥0Kn. Put i0 = 0 and for any n ≥ 1, define

bn :=
∑
m=1

im − im−1

[Km : K0]
.

Then L/K is an infinite APF extension if and only if limn→+∞ bn = +∞ and in this case,

K0 ⊂ K1 ⊂ · · · is the elementary chain of L/K.

Remark 1.2. The above construction also works for a finite extension L/K. In this case, the set B

is finite and hence the elementary chain of L/K is also finite.

1.4 A typical example: Lubin–Tate extension

Now, let K be a local field with residue field kK ∼= Fq and π be a fixed uniformizer. Fix a

polynomial f(T ) = T q + · · · + πT ∈ T q + πTOK [T ]. Then f determines a unique formal group

law [+]f on PK̄ such that [π]f (T ) = f(T ). For any m ≥ 0, define Λf,m = Ker([πm+1]f ), which

is a finite free OK/πm+1-module of rank 1. Let Lf,m = K(Λf,m) and Lf,∞ = ∪m≥0Lf,m. Then

Lubin–Tate theory tells us that for any 0 ≤ m ≤ ∞, Lf,m/K is a Galois extension with Galois group

Gal(Lf,m/K) ∼= UK/U
m+1
K . More precisely, the above isomorphism is induced by a Lubin–Tate

character χ : Gal(Lf,∞/K)→ UK such that for any λ ∈ Λf,m and σ ∈ Gal(Lf,∞/K),

σ(λ) = [χ(σ)]f (λ).

Let λm be an OK/πm+1-basis of Λf,m, which turns out to be a uniformizer of Lf,m. Then for any

−1 ≤ n ≤ m, σ ∈ Gal(Lf,m/Lf,n) \ Gal(Lf,m/Lf,n+1) if and only if there exists a basis λ′m−n−1 of

Λf,m−n−1 such that

σ(λm) = λm[+]fλ
′
m−n−1.

Since X[+]fY ≡ X + Y mod XY , for such a σ, we have

νLf,m
(σ(λm)− λm) = νLf,m

(λ′m−n−1) = qn+1.

So iLf,m
(σ) = qn+1 − 1 if and only if σ ∈ Gal(Lf,m/Lf,n) \Gal(Lf,m/Lf,n+1).

From this, it is easy to see that

Gal(Lf,m/K)u =


Gal(Lf,m/K), −1 ≤ u ≤ 0

Gal(Lf,m/Lf,i), qi − 1 < u ≤ qi+1 − 1 (∀ 0 ≤ i ≤ m− 1)

1, u > qm − 1

. (1.1)
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It is easy to compute Herbrand’s ψ-function

ψLf,m/K(u) =


u, −1 ≤ u ≤ 0

qi − 1 + (qi+1 − qi)(u− i), i < u ≤ i+ 1 (∀ 0 ≤ i ≤ m− 1)

qm − 1 + (qm+1 − qm)(u−m), u ≥ m

, (1.2)

and ramification groups

Gal(Lf,m/K)u =


Gal(Lf,m/K), −1 ≤ u ≤ 0

Gal(Lf,m/Lf,i), i < u ≤ i+ 1 (∀ 0 ≤ i ≤ m− 1)

1, u > m

. (1.3)

By letting m→ +∞, we conclude that

ψLf,∞/K(u) =

 u, −1 ≤ u ≤ 0

qi − 1 + (qi+1 − qi)(u− i), i < u ≤ i+ 1 (∀ 0 ≤ i)
, (1.4)

and that

Gal(Lf,∞/K)u =

 Gal(Lf,∞/K), −1 ≤ u ≤ 0

Gal(Lf,∞/Lf,i), i < u ≤ i+ 1 (∀ 0 ≤ i)
. (1.5)

From this, we see that

Proposition 1.13. Keep notations as above.

(1) GuKGLf,∞ ̸= G>uK GLF,∞ if and only if u ∈ N≥0. In particular, i(Lf,∞/K) = 0.

(2) Lf,0/K is a totally ramified extension of degree q − 1.

(3) For any m ≥ 0, Lf,m+1/Lf,m is an elementary extension of level qm+1 − 1.

(4) i(Lf,∞/Lf,0) = q − 1 and c(Lf,∞/Lf,0) = 1− 1
q . In particular, Lf,∞/K is SAPF.

(5) K = K0 ⊂ Lf,0 = K1 ⊂ Lf,1 = K2 ⊂ · · · is the elementary chain of Lf,∞/K.

Remark 1.3. Recall that Hasse–Arf theorem says that for any finite abelian extension L/K of local

fields, the jumps of the function u 7→ Gal(L/K)u are all integers. Lubin–Tate theory tells us that the

maximal abelian extension Kab = KurLf,∞. So one can recover Hasse–Arf theorem from the above

proposition.

2 The field of norms

From now on, we assume L/K is an infinite APF extension and define

EL/K := {E | K ⊂ E ⊂ L, [E : K] < +∞}.

Clearly, EL/K is a filtered category.
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2.1 The construction of XK

Definition 2.1. Define XK(L) := lim←−E∈EL/K
E, where the translation maps are norm maps. We

denote by x = (xE)E the elements of XK(L).

It is easy to see that XK(L) is a commutative monoid.

Remark 2.1. Let E ⊂ EL/K be a cofinal subset. Then we have XK(L) = lim←−E∈E E.

Construction 2.2. For any a ∈ kL, let [a] be its Teichimüller lifting in K0. For any E ∈ EL/K1
,

[a
1

[E:K1] ] is a well-defined element in E such that fL/K(a) := ([a
1

[E:K1] ])E∈EL/K1
is a well-defined

element in XK(L). So we get a morphism of monoids fL/K : kL → XK(L). For any x ∈ XK(L),

the value νE(xE) is independent of the choice of E ∈ EL/K1
and we denote this value by ν(x). Let

OXK(L) = {x ∈ XK(L) | ν(x) ≥ 0}.

A key ingredient is the following proposition:

Proposition 2.3. Let x, y ∈ XK(L). Then for any E ∈ EL/K1
, {NF/E(xF + yF )}F∈EL/E

converges

to a unique element zE ∈ E.

It is easy to check that z = (zE)E is a well-defined element in XK(L). We define x+ y := z.

Corollary 2.4. XK(L) is a field under addition defined above.

Proof. It is easy to check XK(L) is a ring and then the corollary follows from that

XK(L) \ {0} = lim←−
E∈EL/K

E×

is a group.

The main result is

Theorem 2.5. The XK(L) is a complete discrete valuation field of characteristic p and ν is the

normalised valuation on XK(L). The map fL/K : kL → XK(L) identifies kL with the residue field of

XK(L).

Remark 2.2. The field XK(L) is called the field of norms with respect to the APF extension L/K.

Example 2.6 (Lubin–Tate case). Let Lf,∞/K be the Lubin–Tate extension that we studied in the

previous section. Then XK(Lf,∞) = lim←−n Lf,n. Let λm be the basis of Λf,m such that [π]f (λm+1) =

λm. Then we have NLf,m+1/Lf,m
(λm+1) = λm. In particular, λ := (λm)m≥0 defines an element of

XK(Lf,∞), which is obviously a uniformizer. Therefore, we see that XK(Lf,∞) ∼= kK((λ)). For

example, if K = Qp, f(T ) = (1 + T )p − 1 and Lf,m = Qp(ζpm+1), then we have XQp(Qp(ζp∞)) =

Fp((X)), where X = (ζpm+1 − 1)m≥0.
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2.2 Some preparations

We need some preparations to prove Theorem 2.5.

Proposition 2.7. Let E/K be a totally ramified finite separable extension of degree pr. Then for

any x, y ∈ OE, we have

νK(NE/K(x+ y)−NE/K(x)−NE/K(y)) ≥ p− 1

p
i(E/K).

An immediate corollary is

Corollary 2.8. For any a ∈ OK , there exists an x ∈ OE such that νK(NE/K(x)− a) ≥ p−1
p i(E/K).

Proof. Let πE be a uniformizer of E. Then πK := NE/K(πE) is a uniformizer of K. For any a ∈ OK ,

it is of the form a =
∑

n≥0[an]π
n
K with an ∈ kK . Then one can check that x =

∑
n≥0[a

1
pr

n ]πnE

works.

Proof of Proposition 2.7. Step 1: We first show that if F/K is a subextension in E such that the

result holds for E/F and F/K, then the result is true for E/K.

Indeed, for any x, y ∈ OE , by Proposition 2.7 for E/F , there exists a z ∈ OF with νF (z) ≥
p−1
p i(E/F ) such that

NE/F (x+ y) = NE/F (x) +NE/F (y) + z.

By Proposition 2.7 for F/E, there exists an a ∈ OK with νK(a) ≥ p−1
p i(F/K) such that

NF/K(NE/F (x) +NE/F (y) + z) = NE/K(x) +NE/K(y) +NF/K(z) + a.

So we have

νK(NE/K(x+ y)−NE/K(x)−NE/K(y)) = νK(NF/K(z) + a)

≥ min(νK(NF/K(z)), νK(a))

≥ p− 1

p
min(i(E/F ), i(F/K))

≥ p− 1

p
i(E/K) (cf. Prop 1.11(4))

Step 2: We show the result is true when E/K is Galois. Since Gal(E/K) is a p-group (and

hence solvable), by Step 1, we may assume E/K is moreover cyclic of degree p.

We may assume νE(x) ≥ νE(y) such that y ̸= 0. Replacing x and y by x
y and 1, we may assume

y = 1. By the following lemma:

Lemma 2.9 ([Se, p83, Lem 5]). Let E/K be a totally ramified cyclic extension of degree p. Then

for any n ≥ 0 and any x ∈ OE with νE(x) ≥ n, we have

NE/K(1 + x) ≡ 1 +NE/K(x) + TE/K(x) mod TE/K(P2n
E ).
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we see that NE/K(1 + x)− 1−NE/K(x) ∈ TE/K(OE). By the following lemma:

Lemma 2.10 ([Se, p83, Lem 4]). Let E/K be a totally ramified cyclic extension of degree p and

m := (i(E/K) + 1)(p− 1). Then for any n ≥ 0,

TE/K(Pn
E) = P

[m+n
p

]

K .

We see that

νK(NE/K(1 + x)− 1−NE/K(x)) ≥ [
(i(E/K) + 1)(p− 1)

p
] ≥ p− 1

p
i(E/K)

as desired. Here, we apply Hasse–Arf theorem (i.e. i(E/K) ∈ N) implicitly.

Step 3: Assume E/K is a subextension of some totally ramified Galois extension F/K of degree

pn. Then the result holds true for E/K.

Indeed, Gal(F/E) is a subgroup of the p-group Gal(F/K). Use the following well-known lemma:

Lemma 2.11. Let G be a p-group and H < G be a subgroup. Then H < NG(H) is a strict subgroup

of its normalizer in G.

By Galois correspondence, we know that F/K factors as suquential Galois extensions (which are

totally widely ramified). So we conclude by first two steps.

Step 4: Now let F be the Galois closure of E/K and K1 be the maximal tamely ramified

subextension of K in F . Then E and F are linearly disjoint over K. In particular, we have

NE/K(x+ y)−NE/K(x)−NE/K(y) = NEK1/K1
(x+ y)−NEK1/K1

(x)−NEK1/K1
(y).

By Step 3, we have

νK1(NE/K(x+ y)−NE/K(x)−NE/K(y)) ≥ p− 1

p
i(EK1/K1).

Then the result follows from that νK1 = eK1/KνK and that

Lemma 2.12. i(EK1/K1) = eK1/Ki(E/K).

Proof. Recall if M/N is a tamely ramified extension, then we have ψM/N (u) = eM/Nu when u ≥ 0.

Since ψEK1/K = ψEK1/K1
◦ ψK1/K = ψEK1/E ◦ ψE/K , the result follows by comparing the first cusp

of ψEK1/K(u) (u > 0).

Now, the proof is complete.

Proposition 2.13. Let E/K be a totally ramified separable extension of degree pr. Then for any

x, y ∈ OE such that νE(x− y) ≥ n, we have

νK(NE/K(x)−NE/K(y)) ≥ ϕE/K(n).
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Proof. As the proof of Proposition 2.7, we may assume E/K is a moreover a Galois extension. We

may assume νE(x) ≥ νE(y) and y ̸= 0. Noting that

νK(NE/K(
x

y
)− 1) = νK(NE/K(x)−NE/K(y))− νE(y)

and that

ϕE/K(n− νE(y)) ≥ ϕE/K(n)− νE(y),

we may assume y = 1. When n = 0, the result is trivial. So we may assume n ≥ 1; equivalently,

x ∈ UnE and are reduced to showing that νK(NE/K(x)− 1) ≥ ϕE/K(n).

Lemma 2.14 ([Se, p91, Prop 8]). Let E/K be a totally ramified Galois extension, then for any

m ≥ 0, we have NE/K(U
ψE/K(m)

E ) ⊂ UmK and NE/K(U
ψE/K(m)+1

E ) ⊂ Um+1
K .

Let m be the integer satisfying ψE/K(m) ≤ n < ψE/K(m+1). If ψE/K(m) = n, by above lemma,

we have νK(NE/K(x)− 1) ≥ m = ϕE/K(n). If ψE/K(m) < n, we have νK(NE/K(x)− 1) ≥ m+ 1 ≥

ϕE/K(n), again by above lemma. The proof is complete.

Now, we are able to prove Proposition 2.3.

Proof of Proposition 2.3: Let x, y ∈ XK(L). Fix an E ∈ EL/K1
.

Let F1 ⊂ F2 be elements in EL/E . Then by Proposition 2.7, we have

νF1(xF1 + yF1 −NF2/F1
(xF2 + yF2)) ≥

p− 1

p
i(F2/F1) ≥

p− 1

p
i(L/F1).

By Proposition 2.13, we have

νE(NF1/E(xF1 + yF2)−NF2/E(xF2 + yF2)) ≥ ϕF1/E(
p− 1

p
i(L/F1)) ≥ ϕL/E(

p− 1

p
i(L/F1)).

It remains to show limF→L i(L/F ) = +∞: Let K0 ⊂ K1 ⊂ · · · be the elementary chain of L/K and

then we have limn→+∞ i(L/Kn) = +∞.

2.3 The proof of main theorem

For any E ∈ EL/K , define r(E) := min{n ∈ N | n ≥ p−1
p i(L/E)}. We have shown that

limE→L r(E) = +∞ and if E1 ⊂ E2, then r(E1) ≤ r(E2) (cf. Proposition 1.11 (4)).

Construction 2.15. For any E ∈ EL/K1
, define ĀE := OE/Pr(E)

E . By Proposition 2.7 and Corollary

2.8, for any F ∈ EL/E, the norm map NF/E : ĀF → ĀE is a surjective homomorphism of rings.

Define

AK(L) := lim←−
E∈EL/K1

ĀE .

Then AK(L) is a ring.
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Let 0 ̸= x = (x̄E)E ∈ AK(L). Assume x̄E ̸= 0 and xE is a lifting of x̄E in OE. Then νE(xE)

only depends on x and we denote this value by ν(x). Obviously, (AK(L), ν) is a complete discrete

valuation ring, whose residue field is lim←−E∈EL/K1

kE ∼= kL.

There exists a natural morphism ι : OXK(L) → AK(L) of monoids by sending (x) = (xE)E to

ι(x) = (x̄E)E, which clearly preserves ν. In particular, fL/K : kL → XK(L) induces a morphism

kL → AK(L) of monoids and an isomorphism of fields kL ∼= kAK(L).

Lemma 2.16. The morphism ι : OXK(L) → AK(L) is an isomorphism of rings.

Proof. Since ι preserves ν, it is automatically injective as long as we show it is a ring homomorphism.

For this purpose, we need to show ι also preserves additions on both sides. Let x, y ∈ OXK(L) and

z = x+ y. By Proposition 2.3, for any E ∈ EL/K1
, we have

zE = lim
F→L

NF/E(xF + yF ).

Taking reduction modulo P
r(E)
E , we see that for F sufficiently close to L,

z̄E = NF/E(x̄F + ȳF ) = x̄E + ȳE ,

which is exactly what we want. It remains to show ι is surjective. For any x ∈ AK(L), we choose

a lifting x̂E of x̄E in OE . Then for any F1 ⊂ F2 ∈ EL/K1
, νF1(NF2/F1

(x̂F2) − x̂F1) ≥ r(F1). By

Proposition 2.13, we have

νE(NF2/E(x̂F2)−NF1/E(x̂F1)) ≥ ϕF1/E(r(F1)) ≥ ϕL/E(r(F1)).

Since limF→L r(F ) = +∞, we know that {NF/E(x̂F )}F∈EL/E
converges to a unique element xE ∈ OE

lifting x̄E and satisfying NF/E(xF ) = xE . So (xE)E ∈ OXK(L) which is carried to x by ι.

To conclude Theorem 2.5, we are reduced to the following lemma:

Lemma 2.17. The map ι ◦ fL/K : kL → AK(L) is an homomorphism of rings.

Proof. Since for any a, b ∈ kL, [a] + [b] ≡ [a + b] mod p, it suffices to show that AK(L) is an Fp-

algebra. For this, it is enough to show that for any E ∈ EL/K1
, νE(p) ≥ p−1

p i(L/E). Fix an extension

F ∈ EL/E . We want to show νE(p) ≥ p−1
p i(F/E). As in the proof of Proposition 2.7, we are reduced

to the case where F/E is a totally ramified finite Galois extension of degree pr.

Lemma 2.18 ([Se, p71, Exer 3]). Let E/K be a finite Galois extension and i ≥ 1. If i ≥ νE(p)
p−1 ,

then Gal(E/K)i = 1.

Let E1/E be subextension in F/E which is totally ramified cyclic of degree p. Then the above

lemma implies that

i(E1/E) ≤ νE1(p)

p− 1
=

p

p− 1
νE(p).

So we conclude that νE(p) ≥ p−1
p i(E1/E) ≥ p−1

p i(F/E). We win!
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3 Functoriality of XK

In this section, we show XK is a functor from the category of infinite APF extensions of K to

the category of fields in characteristic p. We recall the following result:

Lemma 3.1 ([Se, p89, Lem 6]). Let L = ∪i∈ILi be an extension of K with I a filtered set and

{Li}i∈I an increasing family of subextensions. Let M/L be an extension of degree n. Then there

exists an i ∈ I and an extension Mi/Li of degree n such that Mi and L are linearly disjoint over Li

and MiL =M . If both Mi and Mj satisfy the above conditions, then there exists a k ≥ i, j such that

MiLk =MjLk =Mk. In particular, Mk satisfies the same conditions. If moreover M/L is separable

(resp. Galois), one may choose Mi such that Mi/Li is also separable (resp. Galois).

Remark 3.1. In the case for M/L Galois, we may further assume Gal(Mi/Li) ∼= Gal(M/L).

3.1 XK as a functor

We fix an infinite APF extension L/K.

Construction 3.2. Let M/K be an infinite APF extension and τ : L→M be a K-homomorphism

of degree n. We construct a homomorphism XK(τ) : XK(L)→ XK(M) as follows:

Put EM,τ = {F ∈ EM/K | τ(L) ⊗τ(L)∩F F ∼= M} and EL,τ = {τ−1(τ(L) ∩ F ) | F ∈ EM,τ}. By

Lemma 3.1, both EL,τ and EM,τ are cofinal in EL and EM , respectively. Then we define

XK(τ) : XK(L) = lim←−
E∈EL,τ

E → lim←−
F∈EM,τ

F = XK(M)

by sending x = (xτ−1(τ(L)∩F )) to (τ(xτ−1(τ(L)∩F )))F . One can check XK(τ) is well-defined. Clearly,

XK(τ) preserves valuations (as τ does so).

Example 3.3. If τ : L→M is an isomorphism with inverse τ−1, then XK(τ) is also an isomorphism

whose inverse is XK(τ−1).

Proposition 3.4. The homomorphism XK(τ) above is separable of degree n. If moreover M/τ(L)

is Galois, then so is XK(M)/XK(τ)(XK(L)) and in this case, XK induces an isomorphism

Gal(M/τ(L)) ∼= Gal(XK(M)/XK(τ)(XK(L))).

Proof. By Example 3.3, we may assume τ : L → M is the natural inclusion L ⊂ M . By Galois

correspondence, we may assume M/L is already finite Galois. Let K0 be the maximal unramified

subextension of K in M .

Now, let EM,G = {F ∈ EM/K0
| L ⊗L∩F F = M & F/L ∩ F is Galois} and EL,G = {F ∩ L ∈

EL/K0∩L | F ∈ EM,G}. By Lemma 3.1, both EL,G and EM,G are cofinal in EL and EM , respectively. In
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particular, we have G = Gal(M/L) = Gal(F/F ∩ L) for any F ∈ EM,G. By construction of XK(τ)

above, for any σ ∈ G and any x = (xF )F∈EM,G
∈ XK(M), we have XK(σ)(x) = (σ(xF ))F∈EM,G

. So

XK(M)G = XK(L). We claim that G acts on XK(M) faithfully. Granting this, by Galois’ theorem,

we see that XK(M)/XK(L) is finite Galois with Galois group G.

It remains to check that G acts on XK(M) faithfully. Let σ ∈ G such that XK(σ) = 1. Then we

see σ acts trivially on kXK(M)
∼= kM . In particular, for any F ∈ EM,G with E = F ∩ L, we have σ

acts on kF trivially. Let π = (πF )F∈EM,G
be a uniformizer of XK(M). Then πF is also a uniformizer

of F for each F . Since XK(σ) acts on π trivially, we see that σ(πF ) = πF . Therefore, iF (σ) = +∞,

which forces that σ = idF . So σ = 1.

3.2 Fontaine–Wintenberger’s theorem

Construction 3.5. Let M/L be an algebra separable extension in K̄. Then M = ∪E∈EM/L
E and

for any E ∈ EM/L, XK(E) is well-defined. The functoriality of XK allows us to define XL/K(M) :=

colimE∈EM/L
XK(L). This is an algebraic separable extension of XK(L) and if M/L is Galois, then

so in XL/K(M)/XK(L) such that Gal(L/M) ∼= Gal(XL/K(M)/XK(L)). In particular, we can define

XL/K(K̄).

The main result is

Theorem 3.6. The XL/K(K̄) is a separable closure of XK(L). In particular, we have a canonical

isomorphism GXK(L)
∼= GL.

Remark 3.2. When K = Qp and L = Qp(ζp∞), the isomorphism

GQp(ζp∞ )
∼= GFp((X))

∼= G
Fp((X

1
p∞ ))

with X = (ζpn+1 − 1)n≥0 is well-known as Fontaine–Wintenberger theorem in classical p-adic Hodge

theory.

Theorem 3.6 is an immediate consequence of the following proposition:

Proposition 3.7. (1) For any separable algebraic extension X/XK(L), there exists a separable

algebraic extension M/L such that X ∼= XL/K(M).

(2) For any separable algebraic extensions M1 and M2, we have

HomL(M1,M2) = HomXK(L)(XK(M1), XK(M2)).

Proof. The item (2) is easy: By several reductions, we may assume M1 and M2 are both finite over

L. Then by replacing M2/L by its Galois closure, we may assume M2/L is finite Galois and then are

reduced to Proposition 3.4.
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For (1), by functoriality of Xk and Item (2), we may assume X/XK(L) is finite of degree d.

Let f(T ) = T d + a1T
d−1 + · · · + ad be an irreducible polynomial over OXK(L) such that X ∼=

XK(L)[T ]/(f(T )). Let E1 ⊂ E2 ⊂ · · · be subextensions in EL/K1
such that L = ∪nEn. Then

XK(L) ∼= lim←−nEn and we write ai = (ai,n)n≥1. Define fn(T ) = T d + a1,nT
d−1 + · · ·+ ad,n.

Let ∆(g) be the discriminant of a polynomial g(T ) = T d + x1T
d−1 + · · ·+ xd over a certain field.

Then there exists a polynomial D(X1, . . . , Xd) ∈ Z[X1, . . . , Xd] such that ∆(g) = D(x1, . . . , xd).

Lemma 3.8. For n≫ 0, νXK(L)(∆(f)) = νEn(∆(fn)).

Proof. Recall limn→∞ r(En) = +∞. So for n ≫ 0, r(En) ≥ νXK(L)(∆(f)) = νXK(L)(D(a1, . . . , ad)).

Since the coefficients of D belong to Z, we see that

∆(f) = D(a1, . . . , ad) = (D(a1,n, . . . , ad,n))n≥1 = (∆(fn))n≥1 ∈ lim←−
n

ĀEn = OEn/P
r(En)
En

.

So the result follows from the definition of νXK(L).

In particular, we may assume for any n ≥ 0, fn(T ) is separable (i.e. ∆(fn) ̸= 0). Let xn be a

root of fn(T ) = 0, and let Fn = En(xn) and Ln = L(xn) = LFn. Since limn→+∞ i(L/En) = +∞, we

may assume i(L/En) ≥ dνXK(L)(∆(f)) for all n. Then we have

Lemma 3.9. For any u ≥ dνXK(L)(∆(f)), GuEn
⊂ GFn.

Proof. For any σ ∈ GuEn
, assume σ(xn) ̸= xn, we have

νFn(σ(xn)− xn) > min
x∈OFn

(νFn(σ(x)− x)− 1) = iFn(σ)

≥ ψFn/En
(u) (by Lemma 1.8 (1))

≥ u ≥ dνXK(L)(∆(f)) = dνEn(∆(fn))

≥ νFn(∆(fn)) ≥ 2νFn(σ(xn)− xn),

which is impossible. So we must have σ(xn) = xn, which forces that σ ∈ GFn .

By applying above Lemma to u = i(L/En), we see that

GEn = G
i(L/En)
En

GL ⊂ GFnGL ⊂ GEn .

As a consequence, we deduce that L/En and Fn/En are linearly disjoint:

Lemma 3.10. En = L ∩ Fn.

Using this, one can conclude that

Lemma 3.11. i(Ln/Fn) = ψFn/En
(i(L/En)).
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Proof. Since GuEn
∩GFn = G

ψFn/En (u)

Fn
, by Lemma 3.9, for any u ≥ dνXK(L)(∆(f)), we have

GuEn
= G

ψFn/En (u)

Fn
.

Therefore, for u ≥ i(L/En), we have

G
ψFn/En (u)

Fn
GLn = GuEn

(GL ∩GFn) = GuEn
GL ∩GFn .

Applying u = i(L/En), we have

G
ψFn/En (i(L/En))

Fn
GLn = G

i(L/En)
En

GL ∩GFn = GEn ∩GFn = GFn ,

which implies that i(Ln/Fn) ≥ ψFn/En
(i(L/En)).

If this inequality is strict, then there exists some j > i(L/En) such that G
ψFn/En (j)

Fn
GLn = GFn ,

which implies that GFn ⊂ GjEn
GL. Let F be the field such that GF = GjEn

GL. Then by the choice

of j, we see that F/En is a proper extension and F ⊂ L. On the other hand, it follows from that

GFn ⊂ GF that F ⊂ Fn. So we see that F ⊂ L ∩ Fn is a proper extension of En, which violates to

Lemma 3.10. So we deduce i(Ln/Fn) = ψFn/En
(i(L/En)) as desired.

In particular, Ln/Fn is totally widely ramified. Let rn = min{r ∈ N | r ≥ p−1
p i(Ln/Fn)}.

By Construction 2.15, we see that OXK(Ln) = AK(Ln) → ĀFn = OFn/P
rn
Fn

is surjective. Let

yn ∈ OXK(Ln) be a lifting of reduction of xn in ĀFn .

We claim that limn→+∞ f(yn) = 0. Granting this, by replacing (yn)n≥1 by a subsequence, we

may assume y = limn→+∞ yn exists. So f(y) = 0.

Lemma 3.12 (Krasner’s Lemma). Let K be a complete non-archimedean field with separable closure

K̄. For any a ∈ K̄ with all conjugations a1 = a, a2, . . . , ad, if b ∈ K̄ such that |b−a| < min2≤i≤d(|a−

ai|), then K(a) ⊂ K(b).

For n≫ 0, applying Krasner’s Lemma to a = y and b = yn, we have

X ∼= XK(L)(y) ⊂ XK(L)(yn) ⊂ XK(Ln).

On the other hand, we have

[X : XK(L)] = d ≥ [Ln : L] = [XK(Ln) : XK(L)].

So we conclude that X = XK(Ln) and complete the proof.

Now, we are reduced to showing that limn→+∞ νXK(L)(f(yn)) = +∞. Since Ln/Fn is totally

ramified, we have

νXK(Ln)(f(yn)) = νFn(f(yn)Fn),
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where f(yn)Fn is the projection of f(yn) along XK(Ln) ∼= lim←−F∈ELn/K
F → Fn. Since L/En and

Fn/En are linear disjoint, we see that as an element in XK(L) ⊂ XK(Ln), the projection of ai along

XK(Ln)→ Fn is exactly ai,n. By construction of yn, we know that as an element in ĀFn = OFn/P
rn
Fn

,

f(yn)Fn = fn(xn) = 0. Therefore, νFn(f(yn)Fn) ≥ rn and hence

νXK(L)(f(yn)) ≥
1

d
νXK(Ln)(f(yn)) ≥

rn
d
≥ p− 1

dp
i(Ln/Fn) =

p− 1

dp
ψFn/En

(i(L/En)) ≥
p− 1

dp
i(L/En).

Then the claim follows from that limn→+∞ i(L/En) = +∞.

Remark 3.3. Let Ln be as above. By Proposition 3.7 (2), we know that for n≫ 0, Ln’s are isomorphic

to each other such that [Ln : L] = d. Since ♯(HomL(Ln, K̄)) = [Ln : L], by replacing Ln’s by a certain

subsequence, we may assume L1 = L2 = · · · =:M . Then [M : L] = d such that XK(M) = X.

4 Ramification theory

Let L/K be an infinite APF extension. We study the ramification theory of extensions of XK(L)

in this section.

Definition 4.1. Let σ be an automorphism of a local field X and π ∈ OX be a uniformizer. Define

iX(σ) =

 νX(
σ(π)
π − 1), if σ acts on kX trivially

−1, else
.

Let G be a group which acts on X. Then for any u ≥ −1, define Gu = {σ ∈ G | iX(σ) ≥ u}.

4.1 Ramification theory of XK(L)

From now on, let X = XK(L) and we equip Aut(X) = {σ : X → X | σ is continuous} with the

topology induced by {Aut(X)u}u≥−1.

Proposition 4.2. Let σ be a K-automorphism of L. Then there exists an E ∈ EL/K such that for

any F ∈ EL/E, iF (σ) = iX(XK(σ)).

We first give some interesting applications of this proposition.

Lemma 4.3. For any finite Galois extension L′/L and any E′ ∈ EL′/K such that L′ = LE′, there

exists an F ′ ∈ EL′/E′ such that

(1) L′ = LE′;

(2) Put F = F ′ ∩ L, then F ′/F is finite Galois with Gal(F ′/F ) ∼= Gal(L′/L);

(3) For any u ≥ −1, we have Gal(F ′/F )u ∼= Gal(XK(L′)/X)u.
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Proof. Let E0 ∈ EL′/K such that for any σ ∈ Gal(L′/L) and any E ∈ EL′/E0
, iXK(L′)(XK(σ)) = iE(σ).

Let E1 = E′E0 and F ′ =
∏
σ∈Gal(L′/L) σ(E1). We claim F ′ satisfies all desired conditions:

For (1): Since E′ ⊂ F ′, we have LF ′ = L′.

For (2): Clearly, Gal(L′/L) acts on F ′. We claim this action is faithful: Indeed, for any σ ∈

Gal(L′/L), since E0 ⊂ F ′, we have iF ′(σ) = iXK(L′)(XK(σ)). So σ acts on F ′ trivially if and only if

XK(σ) = 1, which happens exactly when σ = 1.

Now, the second condition follows from that F = F ′ ∩L = F = (F ′)Gal(L′/L) and Proposition 3.4

(i.e. Gal(L′/L) ∼= Gal(XK(L′)/X)).

For (3): This follows from that iF ′(σ) = iXK(L′)(XK(σ)) directly.

Corollary 4.4. Assume L/K is Galois and define G = Gal(L/K). Then G acts on X faithfully

whose topology is compatible with that of Aut(X). More precisely, we can identify the ramification

groups

Gal(L/K)u = GψL/K(u) = {σ ∈ G | iX(XK(σ)) ≥ ψL/K(u)}.

Proof. The faithfulness of G-action on XK(L) can be confirmed as in the proof of Proposition 3.4:

Let σ ∈ G such that XK(L) act on X trivially. Then it acts on kXK(L) = kL trivially. Let π =

(πE)E∈EL/K1,G
be a uniformizer of X, where EL/K1,G = {E ∈ EL/K1

| E/K is Galois}. Then πE is

also a uniformizer of E. Since XK(σ)(π) = π, we have σ(πE) = πE for all E. So σ = 1.

For any σ ∈ G, let Eσ ∈ EL/K be as in Proposition 4.2 and Eσ := EL/Eσ
∩ EL/K1,G. Then we have

Gal(L/K)u = lim←−
E∈Eσ

Gal(E/K)u and Gal(E/K)v = Gal(E/K)ψE/K(v).

By Proposition 4.2, iX(XK(σ)) = iE(σ) for any E ∈ Eσ. Therefore

XK(σ) ∈ GψL/K(u) ⇔ σ ∈ Gal(E/K)ψL/K(u) = Gal(E/K)ϕE/K(ψL/K(u)), ∀ E ∈ Eσ ⇔ σ ∈ Gal(L/K)u,

where the second equivalence follows from that for a fixed u ≥ −1, limE→L ϕE/K(ψL/K(u)) = u.

Corollary 4.5. LetM/K be a Galois extension of K containing L. Then the isomorphism Gal(M/L) ∼=
Gal(XL/K(M)/X) preserves ramifications in the following sense: For any u ≥ −1,

Gal(XL/K(M)/X)u = Gal(M/L)u(:= Gal(M/K)ϕL/K(u) ∩Gal(M/L)).

In particular, by taking M = K̄ and applying Theorem 3.6, we have

GuX = GuL(:= GL ∩G
ϕL/K(u)

K ).

Proof. Fix a u ≥ −1 and a Ku ∈ EL/K such that for any E ∈ EL/Ku
, ϕE/K(u) = ϕL/K(u). Let

E1 ⊂ E2 ⊂ · · · ⊂ M be finite Galois extensions of K containing Ku such that ∪n≥1En = M . Put

Ln = LEn and then they are finite Galois over L. By Lemma 4.3, one can find Fn ⊂ ELn/En
such
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that (1) LFn = Ln and (2) Fn/L∩Fn is finite Galois with Galois group Gal(Fn/L∩Fn) ∼= Gal(Ln/L)

such that for any u ≥ −1, Gal(Fn/L∩Fn)u ∼= Gal(XK(Ln)/X)u. In particular, L and Fn are linearly

disjoint over L ∩ Fn and ψXK(Ln)/X = ψFn/Fn∩L.

Since Gal(XL/K(M)/X)u = lim←−Gal(XK(Ln)/X)u, σ ∈ Gal(XL/K(M)/X)u if and only if for any

n ≥ 1, iXK(Ln)(σ) ≥ ψXK(Ln)/X(u); equivalently, for any n ≥ 1, iFn(σ) ≥ ψFn/Fn∩L(u). Since

ψFn/Fn∩L(u) = ψFn/K(ϕFn∩L/K(u)) = ψFn/K(ϕL/K(u)) (∵ Ku ⊂ En ⊂ Fn ∩ L),

σ ∈ Gal(XL/K(M)/X)u if and only if σ ∈ Gal(Fn/K)ψFn/K(ϕL/K(u)) = Gal(Fn/K)ϕL/K(u) for any

n ≥ 1; equivalently, σ ∈ Gal(M/K)ϕL/K(u) ∩Gal(M/L) = Gal(M/L)u, because ∪n≥1Fn =M .

Corollary 4.6. Let M/L be a separable algebraic extension. Then M/K is APF if and only if

XL/K(M)/X is. If this is the case and moreover M/L is infinite, then there exists a canonical

isomorphism XK(M) ∼= XX(XL/K(M)).

Proof. By Corollary 4.5, we have

[GX : GuXGXL/K(M)] = [GL : GuLGM ] = [GL : (G
ϕL/K(u)

K ∩GL)GM ]

=[GL : G
ϕL/K(u)

K GM ∩GL] = [G
ϕL/K(u)

K GL : G
ϕL/K(u)

K GM ].

Since [GK : G
ϕL/K(u)

K GL] < +∞ (as L/K is APF), GuXGXL/K(M) is open in GX if and only if

G
ϕL/K(u)

K GM is open in GK . So XL/K(M) is APF if and only if M/K is so.

It remains to construct an isomorphism j : XK(M)
∼=−→ XX(XL/K(M)). We remark that EM/L =

EXL/K(M)/X by Proposition 3.7 (2).

For any x = (xE)E∈EM/K
∈ XK(M) and for any F ∈ EM/L, define xF ∈ XK(F ) by xF =

(xE)E∈EF/K
. We claim that (xF )F∈EM/L

defines an element in XX(XL/K(M)). Indeed, for any

F ⊂ F ′ in EM/L, by Lemma 3.1, one can find extensions E′
n/En such that (1) E′

n/En and F/En are

linearly disjoint; (2) F ′ = FE′
n; and (3) F = ∪n≥1En. In particular, we have xF ′ = (xE′

n
)n≥1 and

xF = (xEn)n≥1. By functoriality of XK , we see that

NXK(F ′)/XK(F )(xF ′) = (NF ′/F (xE′
n
))n≥1 = (NE′

n/En
(xE′

n
))n≥1 = (xEn)n≥1 = xF .

So we get a morphism j : XK(M)→ XX(XL/K(M)) sending x to (xF )F , which obviously preserves

multiplications.

The map j is clearly injective and we now show that it is also surjective. Indeed, for any

(xF )F∈EM/L
∈ XX(XL/M (K)), we write xF = (xF,E)E∈EF/K

. We claim that xF,E = xF ′,E when

F ⊂ F ′. To conclude, it suffices to consider a special sequence En ∈ EF/K such that F = ∪n≥1En

(because if E ⊂ En, then xF,E = NEn/E(xF,En) = NEn/E(xF ′,En) = xF ′,E). So we may choose E′
n/En

as above and then get

(xF ′,En)n≥1 = (NE′
n/En

(xF ′,E′
n
))n≥1 = NXK(F ′)/XK(F )(xF ′) = xF = (xF,En)n≥1.
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It remains to show that j also preserves additions; that is, for any x ∈ XK(M), j(x+1) = j(x)+1.

Let y = x+ 1 and then yE = limE′→M NE′/E(xE′ + 1) for any E ∈ EM/K . Therefore,

yF = ( lim
E′→M

NE′/E(xE + 1))E∈EF/K
.

On the other hand, let z = j(x) + 1, then for any F ∈ EM/L, we have

zF = lim
F ′→M

NXK(F ′)/XK(F )(xF ′ + 1).

So we have to show that yF = zF .

We claim that limF→M νXK(F )(yF − 1− xF ) = +∞. Granting this, for any F ′/F , we have

νXK(F )(NXK(F ′)/XK(F )(1 + xF ′)− yF ) = νXK(F )(NXK(F ′)/XK(F )(1 + xF ′)−NXK(F ′)/XK(F )(yF ′))

≥ ϕXK(F ′)/XK(F ))(νXK(F ′)(xF ′ + 1− yF ′)) (∵ Proposition 2.13)

≥ ϕXK(M)/XK(F ))(νXK(F ′)(xF ′ + 1− yF ′)).

By letting F ′ →M , we get zF = yF as desired.

It remains to confirm limF→M νXK(F )(yF − 1 − xF ) = +∞. In other words, for any A > 0, we

have to find an F ∈ EM/L such that for any F ′ ∈ EM/F , νXK(F ′)(yF ′ − 1− xF ′) ≥ A. Let E ∈ EM/K

such that p−1
p i(M/E) ≥ A and define F = EL. For any F ′ ∈ EM/F , as F

′/E is totally ramified, we

have

νXK(F ′)(yF ′ − 1− xF ′) = νE((yF ′ − 1− xF ′)E)

= νE( lim
E′→F ′

NE′/E(yF ′,E′ − 1− xF ′,E′))

= νE′(yF ′,E′ − 1− xF ′,E′)

= νE′( lim
E′′→F ′

NE′′/E′(1 + xF ′,E′′)− 1− lim
E′′→F ′

NE′′/E′(xF ′,E′′))

≥ p− 1

p
i(M/E′) (∵ Proposition 2.7)

≥ A.

The proof is complete.

4.2 Proof of Proposition 4.2

The rest of this section is devoted to proving that for any σ ∈ AutK(L), there exists an E ∈ EL/K
such that for any F ∈ EL/E , iF (σ) = iX(XK(σ)). The σ = 1 case is trivial and hence we assume

σ ̸= 1. Moreover, if iX(XK(σ)) = −1, then σ acts on kXK(L)
∼= kL non-trivially. In this case, we may

choose E = K1 (which implies that kF = kL for any EL/E).

From now on, we assume iX(XK(σ)) ≥ 0 and there exists an E0 ∈ EL/K1
such that 0 < iE0(σ) <

+∞.
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Lemma 4.7. For any E ∈ EL/K , iE(σ) ≤ ψL/E0
(iE0(σ)).

Proof. For any E ∈ EL/E0
, let j(σ) = supσ′ 7→σ iE(σ

′). By Lemma 1.4 (2), we have iE(σ) =

ϕE/E0
(j(σ)); equivalently, j(σ) = ψE/E0

(iE0(σ)). So we have iE(σ) ≤ j(σ) ≤ ψL/E0
(iE0(σ)) as

desired.

Now, let E ∈ EL/E0
such that i(L/E) > ψL/E0

(iE0(σ)). Then L/E is totally widely ramified.

Lemma 4.8. For any F ∈ EL/E, iF (σ) = iE(σ).

Proof. Let F ′/K be the Galois closure of F/K and G = Homσ(E)(σ(F ), F
′). Then ♯G = [F : E].

Since F/E is totally ramified, by Lemma 1.2 (1), we have

iE(σ) =
1

[F : E]

∑
σ′ 7→σ

iF (σ
′) =

1

[F : E]

∑
τ∈G

iF (τσ).

By Lemma 1.6 (2), iσ(F )(τ) ≥ i(σ(F )/σ(E)) = i(F/E) ≥ i(L/E). On the other hand, let π be a

uniformizer of F , then we have

τσ(π)

τ(π)
− 1 =

τσ(π)

π
(
σ(π)

π
− 1 + 1)−1 − 1 =

τσ(π)

π
− 1 +

τσ(π)

π

∑
n≥1

(
σ(π)

π
− 1)n.

Since νF (
σ(π)
π − 1) = iF (σ) ≤ ψL/E0

(iE0(σ)) < i(L/E) ≤ iσ(F )(τ) = νσ(F )(
τσ(π)
τ(π) − 1), we must have

iF (τσ) = νF (
τσ(π)

π
− 1) = νF (

σ(π)

π
− 1) = iF (σ),

which implies that iE(σ) =
♯G

[F :E] iF (σ) = iF (σ).

Finally, we show that iF (σ) = iX(XK(σ)) for any F ∈ EL/E . By the above lemma, it suffices to

find an F ∈ EL/E such that iF (σ) = iX(XK(σ)). Let K0 ⊂ K1 ⊂ · · · be the elementary chain of L/K

and then for any n≫ 0, we have (1) E ⊂ Kn and (2) r(Kn) ≥ p−1
p i(Kn/K) > ψL/E0

(iE0(σ)) + 1 ≥

iKn(σ) + 1. We remark that σ(Kn) = Kn for any n (as σ(L) = L) by the uniqueness of Kn’s.

Lemma 4.9. For n≫ 0, iKn(σ) = iX(XK(σ)).

Proof. Let pi = (πn)n≫0 be a uniformizer of X with πn a uniformizer of Kn for each n≫ 0. Then

iX(XK(σ)) = νX(XK(σ)(π)−π)−1 = νKn((σ(π)−π)Kn)−1 = νKn( lim
m→+∞

NKm/Kn
(σ(πm)−πm))−1.

By Proposition 2.7, we know that

νKn( lim
m→+∞

NKm/Kn
(σ(πm)− πm)− (σ(πn)− πn)) ≥ r(Kn).

As νKn(σ(πn)− πn) = iKn(σ) + 1 < r(Kn), we must have

νKn( lim
m→+∞

NKm/Kn
(σ(πm)− πm)) = νKn(σ(πn)− πn) = iKn(σ) + 1.

So we deduce that iX(XK(σ)) = iKn(σ) as expected.

The proof of Proposition 4.2 is complete.
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5 Infinite SAPF extensions are perfectoid

Using fancy language, the goal of this section is to show the following result:

Theorem 5.1. Each infinite SAPF extension L/K has L̂ as a perfectoid field in the sense of [Sch]

such that the complete radical closure X̂K(L)r of XK(L) is canonically isomorphic to L̂♭, the tilting

of L̂ in the sense of [Sch].

5.1 The tilting functor

In this part, let C be a complete valuation field with perfect residue field kC of characteristic p.

Construction 5.2. Let C♭ = lim←−x 7→xp
C and AC := lim←−x 7→xp

OC/p. For any x = (xn)n≥0 ∈ C♭,

define ν(x) = νC(x0) and let OC♭ = {x | ν(x) ≥ 0}. Then OC♭ = lim←−x 7→xp
OC .

For any 0 ̸= a = (an)n≥0 ∈ AC , let m ≥ 0 such that am ̸= 0 and ãm ∈ OC be a lifting of am.

Then pmνC(ãm) only depends on a and we denote this value by ν(a).

Clearly, there exists a morphism ι : OC♭ → AC of monoids by sending (xn)n≥0 to (xn mod p)n≥0.

Clearly, ι preserves ν.

For any x ∈ kC with Teichimüller lifting [x] ∈ OC , the element ([x
1
pn ])n≥0 is well-defined in OC♭,

which induces a morphism fC : kC → OC♭ of monoids.

We first show that C♭ is a field. The idea is similar to the proof of Proposition 2.3.

Proposition 5.3. (1) For any x = (xn)n≥0, yn≥0
∈ O♭C and any n ≥ 0, {(xn+m + yn+m)

pm}m≥0

converges to a unique element zn ∈ OC . As a consequence, z = (zn)n≥0 is a well-defined

element in OC♭ and we denote it by x+ y := z.

(2) For any x = (xn)n≥0, yn≥0
∈ C♭ and any n ≥ 0, {(xn+m+ yn+m)

pm}m≥0 converges to a unique

element zn ∈ C. As a consequence, z = (zn)n≥0 is a well-defined element in OC♭ and we denote

it by x+ y := z.

(3) Under the addition defined in (2), (C, ν) is a valuation field with ring of integers OC♭.

Proof. Item (2) is a consequence of (1) by assuming ν(x) ≥ ν(y) with x ̸= 0 and replacing x, y by

x
y and 1. By definition of ν, it makes OC♭ a valuation ring. Then Item (3) follows as C♭ \ {0} is a

group.

For (1): Since xp
m

n+m = xn, y
pm

n+m = yn for any n,m ≥ 0, we know that

(xn+m+1 + yn+m+1)
p ≡ xpn+m+1 + ypn+m+1 = xn+m + yn+m mod p.

The following lemma is well-known:
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Lemma 5.4. Let R be a ring, I be an ideal, x, y ∈ R and m ≥ 1. If x ≡ y mod I, then xp
m ≡ ypm

mod (pmI, pm−1Ip, · · · , Ipm). In particular, when I = (p), xp
m ≡ ypm mod pm+1.

In particular, we have (xn+m+1+yn+m+1)
pm+1 ≡ (xn+m+yp

m

n+m) mod pm+1. This implies (1).

Theorem 5.5. The field C♭ is a complete valuation field with respect to ν such that ι : OC♭ → AC

is an isomorphism of valuation rings and that fC : kC → OC♭ is a ring homomorphism identifying

kC with kC♭. In particular, C♭ is perfect of characteristic p.

Proof. Clearly, (AC , ν) is a complete valuation ring of characteristic p with residue field lim←−x 7→xp
kC ∼=

kC . It is enough to show ι is an isomorphism. We may proceeding as the proof of Lemma 2.16.

We first show that ι preserves additions. Let x, y ∈ OC♭ with z = x+ y. Then we have

zn = lim
m→+∞

(xn+m + yn+m)
pm .

Taking reductions modulo p, we have

z̄n = lim
m→+∞

(x̄n+m + ȳn+m)
pm = x̄p

m

n+m + ȳp
m

n+m = x̄n + ȳn,

which is exactly what we want.

Since ι preserves ν, it is an injection. We need to show it is also a surjection. Let a = (an)n≥0 ∈ AC
and let ãn be a lifting of an in OC for each n. The same proof for Proposition 5.3 (1) shows that for

any n ≥ 0, {ãp
m

n+m}m≥0 converges to a unique element xn ∈ OC . It is easy to see that (xn)n≥0 defines

an element x in OC♭ such that ι(x) = a.

Since F((xn+1)n≥1) = (xpn+1)n≥1 = (xn)n≥1, we see that the absolute Frobenius map F is an

automorphism of C♭.

Remark 5.1. From the proof, it is easy to see that for any non-maximal closed ideal I ∈ OC containing

p, we always have OC♭ = lim←−x 7→xp
OC/I.

Definition 5.6. We call the field C♭ the tilting of C. In [Win], C♭ is denoted by R(C).

Construction 5.7. For any x = (xn)n≥0 ∈ O♭C , we define x♯ = x0 ∈ OC . Then there exists a ring

homomorphism

θ : W(OC♭)→ OC

sending each
∑

n≥0 p
n[xn] to

∑
n≥0 p

nx♯n. By the universal property of Witt vectors, this map is

induced by the natural projection

OC♭ = lim←−
x 7→xp

OC/p→ OC/p.

We say C is perfectoid, if θ is surjective with kernel Ker(θ) principle generated by an element of

the form ξ = [x0] + p[x1] + · · · such that ν(x0) > 0 and ν(x1) = 0. We say such an element ξ is

distinguished.
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5.2 The tiltings of infinite SAPF extensions

From now on, we always assume L/K is an infinite SAPF extension and X = XK(L). For any

n ≥ 0, let En = {E ∈ EL/K1
| pn|qE := [E : K1]}. Then En is cofinal in EL/K .

Proposition 5.8. For any x = (xE) ∈ X and any n ≥ 1, {xp
−nqE
E }E∈En converges to a unique

element xn ∈ L̂ such that (xn)n≥0 ∈ L̂♭. Moreover the map x → (xn)n≥0 induces a continuous

homomorphism ΛL/K : XK(L)→ L̂♭.

Remark 5.2. It is not hard to check that ΛL/K defined above preserves the valuations.

We need the following lemma:

Lemma 5.9. Let E/K be a totally ramified separable extension of degree pr. Then for any x ∈ E,

νK(
NE/K(x)

xpr
− 1) ≥ c(E/K).

Proof. Let π be a uniformizer of K. Replacing x by πnx for n≫ 0, we may assume x ∈ OE .

Let K = K1 ⊂ K2 ⊂ · · · ⊂ Kr = E be the elementary chain of E/K. We will prove the lemma

by induction on r. Let in = i(Kn+1Kn) and then c(E/Kn) = infm≥n
im

[Km+1:Kn]
.

When r = 2, we know E/K is itself element and are reduced to show that for any x ∈ OE ,

νK(
NE/K(x)

xpr
− 1) ≥ i(E/K)

pr . Since

NE/K(x)

xpr
=

∏
σ∈HomK(E,K̄)

(1 +
σ(x)

x
− 1),

it is enough to show νE(
σ(x)
x − 1) ≥ i(E/K), as νE = [E : K]νK . Write x = uπrE with r ≥ 0 and

u ∈ O×
E and then

σ(x)

x
− 1 =

(σ(πrE)

πrE
− 1)

σ(u)

u
+
σ(u)

u
− 1.

By the definition of iE , we see that νE(
σ(x)
x − 1) ≥ iE(σ). Then the result follows as iE(σ) ≥

ψE/K(i(E/K)) ≥ i(E/K), by Lemma 1.8.

For r ≥ 3 and any x ∈ OE , by inductive hypothesis, we have

νK2(
NE/K2

(x)

x[E:K2]
− 1) ≥ inf

n≥2

in
[Kn+1 : K2]

= c(E/K2),

which implies that

νK(
NE/K2

(x)

x[E:K2]
− 1) ≥ [K2 : K]c(E/K2) ≥ c(E/K).

On the other hand, we have already shown that

νK(
NE/K(x)

NE/K2
(x)[K2:K]

− 1) ≥ c(K2/K) ≥ c(E/K).

Then the lemma follows from the above two inequalities as desired.
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Corollary 5.10. For any x = (xE)E∈EL/K
∈ XK(L) and any n ≥ 0, (xp

−nqE
E )E∈En converges.

Proof. We only consider the n = 0 case while the general case can be handled similarly. We may

assume K = K1 from now on to simplify the notations. So we have to show for any C > 0, there

exists an E ∈ E0 = EL/K such that for any E′ ⊂ E′′ in EL/E , νK(x
qE′
E′ − xqE′′

E′′ ) ≥ C.

Let K = K1 ⊂ K2 ⊂ · · · ⊂ L be the elementary chain of L/K. We choose an N ≫ 0 satisfying

the following condition:

(1) If char(K) = p, then [KN : K] ≥ A−νK(xK)
c(L/K) .

(2) If char(K) = 0, choose an N0 such that (N0 +
1
p−1)νK(p) ≥ A − νK(xK), then [KN : K] ≥

pN0 max(1, νK(p)
(p−1)c(L/K)).

Now we are going to show that E = KN satisfies the desired condition.

For any E′ ⊂ E′′ in EL/E , by Lemma 5.9, we have

νK(
xE′

x
qE′′/qE′
E′′

− 1) = q−1
E′ νE′(

NE′′/E′(xE′′)

xE
′′:E′

E′′
− 1) ≥ q−1

E′ c(E
′′/E′) ≥ q−1

E′ c(L/KN ).

Here, the last inequality follows from c(E′′/E′) ≥ c(E′′/KN ) ≥ c(L/KN ).

Recall that c(L/K) = infn≥1
i(Kn+1/K)
[Kn+1:K] and c(L/KN ) = infn≥N

i(Kn+1/KN )
[Kn+1:KN ] . Then we have

νK(
xE′

x
qE′′/qE′
E′′

− 1) ≥ q−1
E′ [KN : K]c(L/K).

Case 1: Assume char(K) = p. By condition (1), we have

νK(x
qE′
E′′ − xqE′′

E′′ ) = qE′(νK(
xE′

x
qE′′/qE′
E′′

− 1) + νK(x
qE′′/qE′
E′′ ))

≥ [KN : K]c(L/K) + qE′′νK(xE′′)

≥ A− νK(xK) + νE′′(xE′′) = A

Case 2: Assume char(K) = 0. Since [KN : K] ≥ pN0 νK(p)
(p−1)c(L/K) , we have

νK(
xE′

x
qE′′/qE′
E′′

− 1) ≥ q−1
E′ p

N0
νK(p)

p− 1
.

Recall the following fact:

Lemma 5.11 ([Se2, Prop. 6, n◦ 1.7]). Let K be a complete discrete valued p-adic field with e1 =

νK(p)
p−1 . Put λ(n) = inf(pn, n + e) =

 pn, n ≤ e1
n+ e, n ≥ e1

. Then u : UK → UK carrying each x to xp

sends UnK and Un+1
K to U

λ(n)
K and U

λ(n)+1
K and hence induces a homomorphism un : UnK/U

n+1
K →

U
λ(n)
K /U

λ(n)+1
K . Moreover, un is surjective with Ker(un) vanishing if n = e1 and cyclic of degree p if

n ̸= e1.
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Since qE′ ≥ [KN : K] ≥ pN0 (by condition (2)), by above fact, we have

νK(
x
qE′/pN0

E′

x
qE′′/pN0

E′′

− 1) ≥ pνK(
x
qE′/pN0+1

E′

x
qE′′/pN0+1

E′′

− 1) ≥ · · · ≥ qE′

pN0
νK(

xE′

x
qE′′/qE′
E′′

− 1) ≥ νK(p)

p− 1
.

By above fact again, we conclude that

νK(x
qE′
E′ − xqE′′

E′′ ) = νK(
x
qE′
E′

x
qE′′
E′′
− 1) + qE′′νK(xE′′)

≥ νK(p)

p− 1
+N0νK(p) + νE′′(xE′′)

≥ A− νK(xK) + νK(NE′′/K(xE′′)) = A

.

The proof is complete by combining both two cases together.

Proof of Proposition5.8: For any x = (xE)E∈EL/K
∈ XK(L), let xn = limE∈En x

p−nqE
E . Since En+1 ⊂

En, we have xpn+1 = xn and hence get an element ΛL/K(x) ∈ L̂♭. By construction, ΛL/K preserves

multiplication and is injective. (If ΛL/K(x) = 0, then x0 = 0, which implies that xqEE = 0 = xE for

sufficiently large E and hence x = 0.)

It remains to prove that ΛL/K is additive. In other words, we need to show for any x ∈ OXK(L),

ΛL/K(x+1) = ΛL/K(x)+1. Put y = x+1 and then we have to show that yn = limm→+∞(1+xn+m)
pm .

For any n,m ≥ 0, since xn+m = limE∈En x
qEp

−n

E , there exists some r ≥ n+m+ 1 such that

(1) νK1(xn+m − x
qKrp

−n−m

Kr
) ≥ p− 1

p
c(L/K1).

By enlarging r if necessary, we may also requiring that

(2) νK1(yn+m − y
qKrp

−n−m

Kr
) ≥ p− 1

p
c(L/K1).

By noting that OXK(L) = lim←−E∈EL/K1

OE/Pr(E)
E , we have

νKr(yKr − 1− xKr) ≥ r(Kr) =
p− 1

p
i(L/Kr) =

p− 1

p
i(Kr+1/Kr),

which implies that

(3) νK1(yKr − 1− xKr) ≥ r(Kr) ≥
p− 1

p
i(L/Kr) =

p− 1

p

i(Kr+1/Kr)

[Kr : K1]
≥ p− 1

p
c(L/K1).

Let e = νK1(p) and f = p−1
p c(L/K1). By (1) and Lemma 5.4, we see that

(4) νK1((1 + xn+m)
pm − (1 + x

qKrp
−n−m

Kr
)p

m
) ≥ inf(me+ f, (m− 1)e+ pf, · · · , pmf)

By (2) and Lemma 5.4, we see that

(5) νK1(yn − y
qKrp

−n

Kr
) ≥ inf(me+ f, (m− 1)e+ pf, · · · , pmf).
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By (3) and Lemma 5.4 (and r ≥ n+m+ 1), we have

(6) νK1(y
qKrp

−n

Kr
− (1 + xKr)

qKrp
−n

) ≥ inf(me+ f, (m− 1)e+ pf, · · · , pmf).

Finally, as 1 + x
qKrp

−n−m

Kr
≡ (1 + xKr)

qKrp
−n−m

mod p, we have

(7) νK1((1 + x
qKrp

−n−m

Kr
)p

m − (1 + xKr)
qKrp

−n
) ≥ (m+ 1)e.

Combining (4)-(7) together, we get

νK1(yn − (1 + xn+m)
pm) ≥ inf((m+ 1)e,me+ f, (m− 1)e+ pf, · · · , pmf).

As e, f > 0, we can conclude by letting m→ +∞.

5.3 Proop of Theorem 5.1

We now give a proof of our main theorem in this section. Since L̂♭ is complete and perfect, the

natural morphism ΛL/K : XK(L) → L̂♭ extends canonically to an embedding X̂r := X̂K(L)r → L̂♭.

The key ingredient is the following proposition:

Proposition 5.12. The composition OX̂r
→ OL̂♭ → OL̂/pOL̂ = OL/pOL is a surjection.

We first exhibit how to conclude our main theorem from the above proposition.

Proof of Theorem 5.1: We first show that OX̂r
→ OL̂♭ is an isomorphism. It suffices to show this

morphism is surjective. By Proposition 5.12, we have a surjection OX̂r
→ OL̂/pOL̂, which gives rise

to the desired surjection

OX̂r

∼= lim←−
x 7→xp

OX̂r
→ lim←−

x 7→xp
OL̂/pOL̂ = OL̂♭ .

Now we show L̂ is perfectoid in the sense of Construction 5.7.

Case 1: Assume char(K) = p. In this case, OL̂♭ = lim←−x7→xp
OL̂ → OL̂ is a surjection. Therefore

OL̂ is itself perfect, which forces that OL̂♭ = OL̂. So the natural map W(OL̂♭) → OL̂ is surjection

with kernel principly generated by p. So L̂ is perfectoid.

Case 2: Assume char(K) = p. Since θ : W (OL̂♭) → OL̂ is induced by the surjection OL̂♭ →

OL̂/pOL̂, we know θ is itself a surjection. It remains to show Ker(θ) is generated by a distinguished

element.

Recall for any x = (xE)E∈EL/K1
∈ XK(L), νX(x) = νK1(xK1). So we have νX(XK(L)×) = Z =

νK1(K
×
1 ). Therefore, νX(X̂

×
r ) = Z[1p ] = νK1(L

×). In particular, there exists an x0 ∈ L̂♭ such that

νX(x0) = νK1(p); that is, θ([x0]) = −pu for some u ∈ OL̂. By the surjection of θ, there exists an

element [x1] + p[x2] + · · · ∈W(OL̂♭) lifting u along θ. Therefore, ξ = [x0] + p[x1] + · · · is contained

in Ker(θ) which is distinguished (because νK1(x
♯
1) = 0 as u is a unit). We are reduced to showing
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that Ker(θ) = (ξ). Indeed, for any y = [y0] + p[y1] + · · · ∈ Ker(θ), we must have νX(y0) ≥ νK1(p).

Therefore, there exists an element z0 ∈ W(OL̂♭) such that y = z0ξ + py1 for some y1 ∈ Ker(θ).

By iteration, there are zn’s such that y ≡ z0ξ + pz1ξ + · · · + pnznξ mod pn+1. Since W(OL̂♭) is

p-complete, we see that z = z0 + pz1 + · · · is well-defined such that y = zξ.

At last, we show Proposition 5.12

Proof of Proposition 5.12: Let K ⊂ K0 ⊂ K1 ⊂ · · · be the elementary chain of L/K. Let c =

inf(νK1(p),
p−1
p c(L/K1)) and I = {x ∈ OL | νK1(x) ≥ c}. Then we know OL̂♭ = lim←−x 7→xp

OL̂/I. We

first claim OX̂r
→ OL̂♭ → OL̂/I = OL/I is a surjection. For this, let us fix an x ∈ OL.

Choose N ≫ 1 such that x ∈ OKN
. Then there exists an y = (yE)E∈EL/K1

∈ OXK(L) = AK(L)

such that

νKN
(x− yKN

) ≥ r(KN ) =
p− 1

p
i(KN+1/KN ).

In particular, we have

νK1(x− yKN
) =≥ p− 1

p

i(KN+1/KN )

[KN : K1]
≥ p− 1

p
c(L/K1) ≥ c,

which implies that x ≡ yKN
mod I.

We are going to show that y1/[KN :K1] ∈ XK(L)r as an element in OL̂♭ (via ΛL/K) has reduction

x modulo I. Write ΛL/K(y) = (yn)n≥0. If [KN : K1] = pr, we see that Λ(y1/[KN :K1]) = (yn+r)n≥0.

So we need to show that yr is a lifting of yKN
along OL̂♭ → OL/I.

For any n ≥ N , by Lemma 5.9, we have

νK1(

y
K

[Kn+1:Kn]

n+1

yKn

−1) = [Kn : K1]
−1νKn(

y
K

[Kn+1:Kn]

n+1

yKn

−1) ≥ [Kn : K1]
−1c(Kn+1/Kn) =

i(Kn+1/Kn)

[Kn+1 : K1]
≥ c(L/K1).

By definition of ΛL/K , we see that

yr = lim
n→+∞

y
[Kn:K1]p−r

Kn
= lim

n→+∞
y
[Kn:KN ]
Kn

.

In particular, for n≫ 0,

yr ≡ y[Kn:KN ]
Kn

= (
y
[Kn:Kn−1]
Kn

yKn−1

)[Kn−1:KN ]y
[Kn−1:KN ]
Kn−1

= (
y
[Kn:Kn−1]
Kn

yKn−1

)[Kn−1:KN ] · · ·
y
[KN+1:KN ]
KN+1

yKN

· yKN

≡ yKN
mod I.

This implies the surjectivity of the composition ι : OX̂r
→ OL̂♭ → OL/I.

Finally, we are reduced to showing ι upgrades to a surjection OX̂r
→ OL̂♭ → OL/p. Since

νX(X
×
r ) = Z[1p ] = νK1(L̂), by shrink c if necessary, we may assume there exists an a ∈ XK(L)r such

that νX(a) = νK1(ΛL/K(a)♯) = c.
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Fix an x0 ∈ OL̂. By what we have proved, there exists a y0 ∈ OXK(L)r such that ι(y0) = x0

mod I. In other words, there exists an x1 such that x0 = ΛL/K(y0)
♯ +ΛL/K(a)♯x1. By iteration, we

have x0 =
∑

m≥0 ΛL/K(amym)
♯. Modulo p, we get

x0 mod p =
∑
m≥0

ΛL/K(amym)
♯ mod p = ΛL/K(

∑
m≥0

amym)
♯ mod p.

In other words, ΛL/K(
∑

m≥0 a
mym)

♯ lifts x0 along OX̂r
→ OL̂♭ → OL̂/p. We are done.
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