Note on field of norms

December 28, 2022

Contents

1 APF extension 2
1.1 Quick review on ramification theory 2
1.2 APF extension 3
1.3 Elementary extension 5
1.4 A typical example: Lubin-Tate extension 6
2 The field of norms 7
2.1 The construction of X_{K} 8
2.2 Some preparations 9
2.3 The proof of main theorem 11
3 Functoriality of X_{K} 13
$3.1 \quad X_{K}$ as a functor 13
3.2 Fontaine-Wintenberger's theorem 14
4 Ramification theory 17
4.1 Ramification theory of $X_{K}(L)$ 17
4.2 Proof of Proposition 4.2 20
5 Infinite SAPF extensions are perfectoid 22
5.1 The tilting functor 22
5.2 The tiltings of infinite SAPF extensions 24
5.3 Proop of Theorem 5.1 27

1 APF extension

Throughout this talk, we always assume K is a complete discrete valuation field with perfect residue field k of characteristic p. We always fix a separable closure \bar{K} of K. For any separable extension L / K, let \mathcal{O}_{L} be the ring of integers, k_{L} the residue field of L, ν_{L} the normalised valuation on L (if L / K is finite) and G_{L} the absolute Galois group of L. Let $U_{K}=\mathcal{O}_{K}^{\times}$and for any $n \geq 1$, $U_{K}^{n}=\left\{x \in U_{K} \mid \nu_{K}(x-1) \geq n\right\}$.

1.1 Quick review on ramification theory

Let us recall some basic facts on ramification theory. A good reference is Serre's book [Se], espectially chatper IV.

Definition 1.1. Let L / K be a finite separable extension and for any $1 \neq \sigma: L \rightarrow \bar{K}$ in $\operatorname{Hom}_{K}(L, \bar{K})$ (where 1 denotes the natural inclusion $L \subset \bar{K}$), define

$$
i_{L}(\sigma)=\min _{x \in \mathcal{O}_{L}}\left(\nu_{L}(\sigma(x)-x)-1\right)\left(i_{L}(1):=+\infty\right)
$$

Equivalently, for any fixed uniformizer π of L,

$$
i_{L}(\sigma)=\left\{\begin{array}{rc}
\nu_{L}\left(\frac{\sigma(\pi)}{\pi}-1\right), & \text { if } \sigma \text { acts on } k_{L} \text { trivially } \\
-1, & \text { else }
\end{array}\right.
$$

Lemma 1.2 ([Se, p63,Prop 3]). Let L^{\prime} / K be a finite separable extension of L / K. Then

$$
i_{L}(\sigma)+1=\frac{1}{e_{L^{\prime} / L}} \sum_{\sigma^{\prime} \mapsto \sigma}\left(i_{L^{\prime}}\left(\sigma^{\prime}\right)+1\right)
$$

where σ^{\prime} runs over the subset of liftings of σ in $\operatorname{Hom}_{K}\left(L^{\prime}, \bar{K}\right)$.
A basic tool to study ramification theory is Herbrand's ϕ-function (and ψ-function).
Definition 1.3. Let L / K be a finite separable extension. For any $t \geq-1$, put

$$
\gamma_{t}:=\sharp\left\{\sigma \in \operatorname{Hom}_{K}(L, \bar{K}) \mid i_{L}(\sigma) \geq t\right\} .
$$

Then Herbrand's ϕ-function is defined as

$$
\phi_{L / K}(u)=\left\{\begin{array}{rc}
u, & -1 \leq u \leq 0 \\
\int_{0}^{u} \frac{\gamma_{t}}{\gamma_{0}} d t, & u \geq 0
\end{array} .\right.
$$

This is a strictly increasing function and we define Herbrand's ψ-function by $\psi_{L / K}=\phi_{L / K}^{-1}$.
Lemma 1.4 ($\left(\right.$ Sel, p74, Prop 15, Lem 4]). Let $K \subset L \subset L^{\prime}$ be finite separable extensions. Then

$$
\text { (1) } \phi_{L^{\prime} / K}=\phi_{L / K} \circ \phi_{L^{\prime} / L} \text { and } \psi_{L^{\prime} / K}=\psi_{L^{\prime} / L} \circ \psi_{L / K} \text {. }
$$

(2) For any $\sigma \in \operatorname{Hom}_{K}(L, \bar{K})$, let $j(\sigma)=\sup _{\sigma^{\prime} \mapsto \sigma} i_{L^{\prime}}\left(\sigma^{\prime}\right)$, then $i_{L}(\sigma)=\phi_{L^{\prime} / L}(j(\sigma))$.

Definition 1.5. Let L / K be a finite Galois extension. For any $u \geq-1$, define $\operatorname{Gal}(L / K)_{u}:=\{\sigma \in$ $\left.\operatorname{Gal}(L / K) \mid i_{L}(\sigma) \geq u\right\}$ and $\operatorname{Gal}(L / K)^{u}:=\operatorname{Gal}(L / K)_{\psi_{L / K}(u)}$. Define $G_{K}^{u}=\lim _{L / K}$ finite Galois $\operatorname{Gal}(L / K)^{u}$.
Lemma 1.6 ([Se, p74, Prop 14]). Let L / K be a finite Galois extension and F / K be a subextension.
Then for any $u \geq-1$,
(1) $\operatorname{Gal}(L / F)^{\psi_{F / K}(u)}=\operatorname{Gal}(L / F) \cap \operatorname{Gal}(L / K)^{u}$;
(2) If moreover F / K is Galois, then $\operatorname{Gal}(F / K)^{u}=\operatorname{Gal}(L / K)^{u} \operatorname{Gal}(L / F) / \operatorname{Gal}(L / F)$.

Remark 1.1. The function $u \mapsto G_{K}^{u}$ is semi-continuous: For any $u \geq-1, G_{K}^{<u}:=\cap_{v<u} G_{K}^{v}=$ G_{K}^{u}. However, $G_{K}^{>u}:=\cup_{v>u} G_{K}^{v}$ may be not G_{K}^{u}. For example, $G_{K}^{0}=\operatorname{Gal}\left(\bar{K} / K^{u r}\right)$ while $G_{K}^{>0}=$ $\operatorname{Gal}\left(\bar{K} / K^{\text {tame }}\right)$.

1.2 APF extension

Definition 1.7. An extension L / K in \bar{K} is called arithmetic profinite (APF) if for any $u \geq-1$, the group $G_{K}^{u} G_{L}$ is open in G_{K}. In this case, we define $i(L / K):=\sup \left\{i \geq-1 \mid G_{K}^{i} G_{L}=G_{K}\right\}$. For any APF extension L / K, we can also define Herbrand ψ-function by

$$
\psi_{L / K}(u)=\left\{\begin{array}{rc}
u, & -1 \leq u \leq 0 \\
\int_{0}^{u}\left[G_{K}^{0}: G_{L}^{0} G_{K}^{t}\right] d t, & u \geq 0
\end{array} .\right.
$$

An APF extension is called strictly APF (SAPF) if

$$
\liminf _{u \rightarrow+\infty} \frac{\psi_{L / K}(u)}{\left[G_{K}^{0}: G_{L}^{0} G_{K}^{u}\right]}>0
$$

When $i(L / K)>0$, we define

$$
c(L / K)=\inf _{u \geq i(L / K)} \frac{\psi_{L / K}(u)}{\left[G_{K}^{0}: G_{L}^{0} G_{K}^{u}\right]}
$$

Lemma 1.8. (1) Let L / K be a finite separable extension. Then for any $\sigma \in G_{K}^{u}$, we have $i_{L}(\sigma) \geq$ $\psi_{L / K}(u)$.
(2) Let L / K be a finite separable extension. Then for any $\sigma \in G_{K}$, we have $i_{L}(\sigma) \geq \psi_{L / K}(i(L / K))$.

Proof. For (1): Let L^{\prime} / K be the Galois closure of L / K. Then $\sigma \in \operatorname{Gal}\left(L^{\prime} / K\right)^{u}=\operatorname{Gal}\left(L^{\prime} / K\right)_{\psi_{L^{\prime} / K}(u)}$. Define $j(\sigma)=\sup \left\{i_{L^{\prime}}(\tau) \mid \tau \in \operatorname{Gal}\left(L^{\prime} / K\right), \tau_{\mid L}=\sigma_{\mid L}\right\}$. Then by Lemma 1.4 .

$$
i_{L}(\sigma) \geq \phi_{L^{\prime} / L}(j(\sigma)) \geq \phi_{L^{\prime} / L}\left(i_{L^{\prime}}(\sigma)\right) \geq \phi_{L^{\prime} / L}\left(\psi_{L^{\prime} / K}(u)\right)=\psi_{L / K}(u) .
$$

For (2): Since $G_{K}^{i(L / K)} G_{L}=G_{K}$, one can find a $\tau \in G_{K}^{i(L / K)}$ such that $\tau_{\mid L}=\sigma_{\mid L}$. By (1), we have

$$
i_{L}(\sigma)=i_{L}(\tau) \geq \psi_{L / K}(i(L / K)) .
$$

Example 1.9. (1) Any finite separable extension L / K is (S)APF.
(2) Let L / K be a separable extension with K_{0} (resp. K_{1}) the maximal unramified (resp. tamely ramified) subextenion of K in L. Then L / K is (S)APF if and only if K_{i} / K is finite (i.e. $G_{K}^{0} G_{L}$ $\left(G_{K}^{>0} G_{L}\right)$ is open) and L / K_{i} is (S)APF.
(3) If L / K is APF with $i(L / K)>0$, then it is SAPF if and only if $c(L / K)>0$.

Example 1.10 (A conjecture of Serre, confirmed by Sen). Let L / K be a totally ramified Galois extension with $\operatorname{Gal}(L / K)$ a p-adic Lie group (e.g. Lubin-Tate extension). Then L / K is SAPF.

Proposition 1.11. Let $K \subset L \subset M$ be separable extensions.
(1) If L / K is finite, then M / K is (S)APF if and only if M / L is.
(2) If M / L is finite, then L / K is (S)APF if and only if M / K is.
(3) If M / K is (S)APF, then so is L / K.
(4) If M / K is APF, then $i(L / K) \geq i(M / K)$. If moreover L / K is finite, then $i(M / L) \geq \psi_{L / K}(i(M / K))$.
(5) If M / K is APF and $i(M / K)>0$, then $c(L / K) \geq c(M / K)$. If moreover L / K is finite, then $c(M / L) \geq c(M / K)$.

Proof. We only prove (3)-(5) here while the (1) and (2) are easy to believe in.
The APF part of (3) follows from that $\left[G_{K}: G_{K}^{u} G_{L}\right] \leq\left[G_{K}: G_{K}^{u} G_{M}\right]$ and SAPF part will follow from (5) together with Example 1.9 (3).

For (4): Put $i_{0}=i(M / K)$. Since

$$
G_{K}=G_{M} G_{K}^{i_{0}} \subset G_{L} G_{K}^{i_{0}} \subset G_{K},
$$

we have $i(L / K) \geq i_{0}$. Now assume moreover L / K is finite, then by Lemma 1.6 (1), we have $G_{L}^{\psi_{L / K}(u)}=G_{L} \cap G_{K}^{u}$. So we get

$$
G_{L}^{\psi_{L / K}\left(i_{0}\right)} G_{M}=\left(G_{L} \cap G_{K}^{i_{0}}\right) G_{M}=G_{L} \cap G_{K}^{i_{0}} G_{M}=G_{M}
$$

So $i(M / L) \geq \psi_{L / K}\left(i_{0}\right)$.
For (5): Note that for any $t \geq 0$, we have

$$
\left[G_{K}^{0}: G_{K}^{t} G_{M}^{0}\right]=\left[G_{K}^{0}: G_{K}^{t} G_{L}^{0}\right]\left[G_{K}^{t} G_{L}^{0}: G_{K}^{t} G_{M}^{0}\right]=\left[G_{K}^{0}: G_{K}^{t} G_{L}^{0}\right]\left[G_{L}^{0}:\left(G_{K}^{t} \cap G_{L}^{0}\right) G_{M}^{0}\right] .
$$

So we get

$$
\begin{aligned}
\psi_{M / K}(u) & =\int_{0}^{u}\left[G_{K}^{0}: G_{K}^{t} G_{M}^{0}\right] d t \leq \int_{0}^{u}\left[G_{K}^{0}: G_{K}^{t} G_{L}^{0}\right] d t \cdot\left[G_{L}^{0}:\left(G_{K}^{u} \cap G_{L}^{0}\right) G_{M}^{0}\right] \\
& =\frac{\left[G_{K}^{0}: G_{K}^{u} G_{M}^{0}\right]}{\left[G_{K}^{0}: G_{K}^{u} G_{L}^{0}\right]} \int_{0}^{u}\left[G_{K}^{0}: G_{K}^{t} G_{L}^{0}\right] d t .
\end{aligned}
$$

In other words, $\frac{\int_{0}^{u}\left[G_{K}^{0}: G_{K}^{t} G_{M}^{0}\right] d t}{\left[G_{K}^{0}: G_{K}^{u} G_{M}^{0}\right]} \leq \frac{\int_{0}^{u}\left[G_{K}^{0}: G_{K}^{t} G_{L}^{0}\right] d t}{\left[G_{K}^{0}: G_{K}^{u} G_{L}^{0}\right]}$. Since $i(L / K) \geq i(M / K)$, we get

$$
c(M / K)=\inf _{u \geq i(M / K)} \frac{\int_{0}^{u}\left[G_{K}^{0}: G_{K}^{t} G_{M}^{0}\right] d t}{\left[G_{K}^{0}: G_{K}^{u} G_{M}^{0}\right]} \leq \inf _{u \geq i(L / K)} \frac{\int_{0}^{u}\left[G_{K}^{0}: G_{K}^{t} G_{L}^{0}\right] d t}{\left[G_{K}^{0}: G_{K}^{u} G_{L}^{0}\right]}=c(L / K) .
$$

If moreover L / K is finite, then

$$
\left[G_{K}^{0}: G_{K}^{t} G_{M}^{0}\right]=\left[G_{K}^{0}: G_{K}^{t} G_{L}^{0}\right]\left[G_{L}^{0}:\left(G_{K}^{t} \cap G_{L}^{0}\right) G_{M}^{0}\right]=\left[G_{K}^{0}: G_{K}^{t} G_{L}^{0}\right]\left[G_{L}^{0}: G_{L}^{\psi_{L / K}(t)} G_{M}^{0}\right] .
$$

So $\left[G_{K}^{0}: G_{K}^{u} G_{M}^{0}\right] \geq\left[G_{L}^{0}: G_{L}^{\psi_{L / K}(u)} G_{M}^{0}\right]$. Since $\psi_{M / K}(u)=\psi_{M / L}\left(\psi_{L / K}(u)\right)$, we get

$$
\frac{\psi_{M / K}(u)}{\left[G_{K}^{0}: G_{K}^{u} G_{M}^{0}\right]} \leq \frac{\psi_{M / L}\left(\psi_{L / K}(u)\right)}{\left[G_{L}^{0}: G_{L}^{\psi_{L / K}(u)} G_{M}^{0}\right]} .
$$

Since $i(M / L) \geq \psi_{L / K}(i(M / K))$, we get

$$
c(M / K)=\inf _{u \geq i(M / K)} \frac{\psi_{M / K}(u)}{\left[G_{K}^{0}: G_{K}^{u} G_{M}^{0}\right]} \leq \inf _{v \geq \psi_{L / K}(i(M / K))} \frac{\psi_{M / L}(v)}{\left[G_{L}^{0}: G_{L}^{v} G_{M}^{0}\right]} \leq \inf _{v \geq i(M / L)} \frac{\psi_{M / L}(v)}{\left[G_{L}^{0}: G_{L}^{v} G_{M}^{0}\right]}=c(M / L) .
$$

1.3 Elementary extension

Definition 1.12. Let $i>0$ be a rational number. An finite separable extension L / K is called elementary of level i, if $G_{K}^{i} G_{L}=G_{K}$ and $G_{K}^{>i} G_{L}=G_{L}$. In this case, L / K is totally widely ramified with degree $[L: K]$ a power of p and Herbrand ψ-function

$$
\psi_{L / K}(u)=\left\{\begin{array}{rc}
u, & -1 \leq u \leq i \\
i+[L: K](u-i), & u \geq i
\end{array} .\right.
$$

Let L / K be an infinite APF extension and $B:=\left\{b>0 \mid G_{K}^{b} G_{L} \neq G_{K}^{>b} G_{L}\right\}$. Then B is infinite (as $[L: K]=+\infty$) and for any $x \geq 0, B \cap[-1, x]$ is a finite set (as L / K is APF). So we may write

$$
B=\left\{b_{1} \leq b_{2} \leq \cdots\right\} .
$$

For any $n \geq 1$, let $K_{n}=(\bar{K})^{G_{K}^{b_{n}} G_{L}}$ and $i_{n}=\psi_{L / K}\left(b_{n}\right)$. Let K_{0} be the maximal unramified subextension of K in L. Then we have
(1) For any $n \geq 0, K_{n} / K$ is finite and $L=\cup_{n \geq 0} K_{n}$.
(2) K_{1} / K is the maximal tamely ramified subextension of K in L.
(3) For any $n \geq 1, K_{n+1} / K_{n}$ is an elementary extension of level i_{n}.
(4) $c\left(L / K_{1}\right)=\inf _{n \geq 1} \frac{i_{n}}{\left[K_{n+1}: K\right]}$.

We call $K_{0} \subset K_{1} \subset \cdots$ the elementary chain of infinite APF extension L / K.
Conversely, let $K_{0} \subset K_{1} \subset \cdots$ be a chain of finite separable extensions of K such that
(1) K_{0} / K is unramified and K_{1} / K_{0} is totally tamely ramified;
(2) For any $n \geq 1, K_{n+1} / K_{n}$ is an elementary extension of level $i_{n}>0$
(3) $L:=\cup_{n \geq 0} K_{n}$. Put $i_{0}=0$ and for any $n \geq 1$, define

$$
b_{n}:=\sum_{m=1} \frac{i_{m}-i_{m-1}}{\left[K_{m}: K_{0}\right]}
$$

Then L / K is an infinite APF extension if and only if $\lim _{n \rightarrow+\infty} b_{n}=+\infty$ and in this case, $K_{0} \subset K_{1} \subset \cdots$ is the elementary chain of L / K.

Remark 1.2. The above construction also works for a finite extension L / K. In this case, the set B is finite and hence the elementary chain of L / K is also finite.

1.4 A typical example: Lubin-Tate extension

Now, let K be a local field with residue field $k_{K} \cong \mathbb{F}_{q}$ and π be a fixed uniformizer. Fix a polynomial $f(T)=T^{q}+\cdots+\pi T \in T^{q}+\pi T \mathcal{O}_{K}[T]$. Then f determines a unique formal group law $[+]_{f}$ on $\mathfrak{P}_{\bar{K}}$ such that $[\pi]_{f}(T)=f(T)$. For any $m \geq 0$, define $\Lambda_{f, m}=\operatorname{Ker}\left(\left[\pi^{m+1}\right]_{f}\right)$, which is a finite free $\mathcal{O}_{K} / \pi^{m+1}$-module of rank 1. Let $L_{f, m}=K\left(\Lambda_{f, m}\right)$ and $L_{f, \infty}=\cup_{m \geq 0} L_{f, m}$. Then Lubin-Tate theory tells us that for any $0 \leq m \leq \infty, L_{f, m} / K$ is a Galois extension with Galois group $\operatorname{Gal}\left(L_{f, m} / K\right) \cong U_{K} / U_{K}^{m+1}$. More precisely, the above isomorphism is induced by a Lubin-Tate character $\chi: \operatorname{Gal}\left(L_{f, \infty} / K\right) \rightarrow U_{K}$ such that for any $\lambda \in \Lambda_{f, m}$ and $\sigma \in \operatorname{Gal}\left(L_{f, \infty} / K\right)$,

$$
\sigma(\lambda)=[\chi(\sigma)]_{f}(\lambda)
$$

Let λ_{m} be an $\mathcal{O}_{K} / \pi^{m+1}$-basis of $\Lambda_{f, m}$, which turns out to be a uniformizer of $L_{f, m}$. Then for any $-1 \leq n \leq m, \sigma \in \operatorname{Gal}\left(L_{f, m} / L_{f, n}\right) \backslash \operatorname{Gal}\left(L_{f, m} / L_{f, n+1}\right)$ if and only if there exists a basis λ_{m-n-1}^{\prime} of $\Lambda_{f, m-n-1}$ such that

$$
\sigma\left(\lambda_{m}\right)=\lambda_{m}[+]_{f} \lambda_{m-n-1}^{\prime}
$$

Since $X[+]_{f} Y \equiv X+Y \bmod X Y$, for such a σ, we have

$$
\nu_{L_{f, m}}\left(\sigma\left(\lambda_{m}\right)-\lambda_{m}\right)=\nu_{L_{f, m}}\left(\lambda_{m-n-1}^{\prime}\right)=q^{n+1}
$$

So $i_{L_{f, m}}(\sigma)=q^{n+1}-1$ if and only if $\sigma \in \operatorname{Gal}\left(L_{f, m} / L_{f, n}\right) \backslash \operatorname{Gal}\left(L_{f, m} / L_{f, n+1}\right)$.
From this, it is easy to see that

$$
\operatorname{Gal}\left(L_{f, m} / K\right)_{u}=\left\{\begin{array}{rc}
\operatorname{Gal}\left(L_{f, m} / K\right), & -1 \leq u \leq 0 \tag{1.1}\\
\operatorname{Gal}\left(L_{f, m} / L_{f, i}\right), & q^{i}-1<u \leq q^{i+1}-1(\forall 0 \leq i \leq m-1) \\
1, & u>q^{m}-1
\end{array}\right.
$$

It is easy to compute Herbrand's ψ-function

$$
\psi_{L_{f, m} / K}(u)=\left\{\begin{array}{rc}
u, & -1 \leq u \leq 0 \tag{1.2}\\
q^{i}-1+\left(q^{i+1}-q^{i}\right)(u-i), & i<u \leq i+1(\forall 0 \leq i \leq m-1) \\
q^{m}-1+\left(q^{m+1}-q^{m}\right)(u-m), & u \geq m
\end{array}\right.
$$

and ramification groups

$$
\operatorname{Gal}\left(L_{f, m} / K\right)^{u}=\left\{\begin{array}{rc}
\operatorname{Gal}\left(L_{f, m} / K\right), & -1 \leq u \leq 0 \tag{1.3}\\
\operatorname{Gal}\left(L_{f, m} / L_{f, i}\right), & i<u \leq i+1(\forall 0 \leq i \leq m-1) \\
1, & u>m
\end{array}\right.
$$

By letting $m \rightarrow+\infty$, we conclude that

$$
\psi_{L_{f, \infty} / K}(u)=\left\{\begin{array}{rc}
u, & -1 \leq u \leq 0 \tag{1.4}\\
q^{i}-1+\left(q^{i+1}-q^{i}\right)(u-i), & i<u \leq i+1(\forall 0 \leq i)
\end{array}\right.
$$

and that

$$
\operatorname{Gal}\left(L_{f, \infty} / K\right)^{u}=\left\{\begin{array}{rc}
\operatorname{Gal}\left(L_{f, \infty} / K\right), & -1 \leq u \leq 0 \tag{1.5}\\
\operatorname{Gal}\left(L_{f, \infty} / L_{f, i}\right), & i<u \leq i+1(\forall 0 \leq i)
\end{array}\right.
$$

From this, we see that
Proposition 1.13. Keep notations as above.
(1) $G_{K}^{u} G_{L_{f, \infty}} \neq G_{K}^{>u} G_{L_{F, \infty}}$ if and only if $u \in \mathbb{N}_{\geq 0}$. In particular, $i\left(L_{f, \infty} / K\right)=0$.
(2) $L_{f, 0} / K$ is a totally ramified extension of degree $q-1$.
(3) For any $m \geq 0, L_{f, m+1} / L_{f, m}$ is an elementary extension of level $q^{m+1}-1$.
(4) $i\left(L_{f, \infty} / L_{f, 0}\right)=q-1$ and $c\left(L_{f, \infty} / L_{f, 0}\right)=1-\frac{1}{q}$. In particular, $L_{f, \infty} / K$ is SAPF.
(5) $K=K_{0} \subset L_{f, 0}=K_{1} \subset L_{f, 1}=K_{2} \subset \cdots$ is the elementary chain of $L_{f, \infty} / K$.

Remark 1.3. Recall that Hasse-Arf theorem says that for any finite abelian extension L / K of local fields, the jumps of the function $u \mapsto \operatorname{Gal}(L / K)^{u}$ are all integers. Lubin-Tate theory tells us that the maximal abelian extension $K^{a b}=K^{u r} L_{f, \infty}$. So one can recover Hasse-Arf theorem from the above proposition.

2 The field of norms

From now on, we assume L / K is an infinite APF extension and define

$$
\mathcal{E}_{L / K}:=\{E \mid K \subset E \subset L,[E: K]<+\infty\}
$$

Clearly, $\mathcal{E}_{L / K}$ is a filtered category.

2.1 The construction of X_{K}

Definition 2.1. Define $X_{K}(L):=\lim _{E \in \mathcal{E}_{L / K}} E$, where the translation maps are norm maps. We denote by $\underline{x}=\left(x_{E}\right)_{E}$ the elements of $X_{K}(L)$.

It is easy to see that $X_{K}(L)$ is a commutative monoid.
Remark 2.1. Let $\mathcal{E} \subset \mathcal{E}_{L / K}$ be a cofinal subset. Then we have $X_{K}(L)=\varliminf_{\varliminf_{E \in \mathcal{E}}} E$.
Construction 2.2. For any $a \in k_{L}$, let [a] be its Teichimüller lifting in K_{0}. For any $E \in \mathcal{E}_{L / K_{1}}$, $\left[a^{\left.\frac{1}{\left[E: K_{1}\right]}\right]}\right.$ is a well-defined element in E such that $f_{L / K}(a):=\left(\left[a^{\left.\frac{1}{E: K_{1}}\right]}\right]\right)_{E \in \mathcal{E}_{L / K_{1}}}$ is a well-defined element in $X_{K}(L)$. So we get a morphism of monoids $f_{L / K}: k_{L} \rightarrow X_{K}(L)$. For any $\underline{x} \in X_{K}(L)$, the value $\nu_{E}\left(x_{E}\right)$ is independent of the choice of $E \in \mathcal{E}_{L / K_{1}}$ and we denote this value by $\nu(\underline{x})$. Let $\mathcal{O}_{X_{K}(L)}=\left\{\underline{x} \in X_{K}(L) \mid \nu(\underline{x}) \geq 0\right\}$.

A key ingredient is the following proposition:
Proposition 2.3. Let $\underline{x}, \underline{y} \in X_{K}(L)$. Then for any $E \in \mathcal{E}_{L / K_{1}},\left\{N_{F / E}\left(x_{F}+y_{F}\right)\right\}_{F \in \mathcal{E}_{L / E}}$ converges to a unique element $z_{E} \in E$.

It is easy to check that $\underline{z}=\left(z_{E}\right)_{E}$ is a well-defined element in $X_{K}(L)$. We define $\underline{x}+\underline{y}:=\underline{z}$.
Corollary 2.4. $X_{K}(L)$ is a field under addition defined above.
Proof. It is easy to check $X_{K}(L)$ is a ring and then the corollary follows from that

$$
X_{K}(L) \backslash\{0\}=\lim _{E \in \mathcal{E}_{L / K}} E^{\times}
$$

is a group.
The main result is
Theorem 2.5. The $X_{K}(L)$ is a complete discrete valuation field of characteristic p and ν is the normalised valuation on $X_{K}(L)$. The map $f_{L / K}: k_{L} \rightarrow X_{K}(L)$ identifies k_{L} with the residue field of $X_{K}(L)$.

Remark 2.2. The field $X_{K}(L)$ is called the field of norms with respect to the APF extension L / K. Example 2.6 (Lubin-Tate case). Let $L_{f, \infty} / K$ be the Lubin-Tate extension that we studied in the previous section. Then $X_{K}\left(L_{f, \infty}\right)=\lim _{n} L_{f, n}$. Let λ_{m} be the basis of $\Lambda_{f, m}$ such that $[\pi]_{f}\left(\lambda_{m+1}\right)=$ λ_{m}. Then we have $N_{L_{f, m+1} / L_{f, m}}\left(\lambda_{m+1}\right)=\lambda_{m}$. In particular, $\underline{\lambda}:=\left(\lambda_{m}\right)_{m \geq 0}$ defines an element of $X_{K}\left(L_{f, \infty}\right)$, which is obviously a uniformizer. Therefore, we see that $X_{K}\left(L_{f, \infty}\right) \cong k_{K}((\underline{\lambda}))$. For example, if $K=\mathbb{Q}_{p}, f(T)=(1+T)^{p}-1$ and $L_{f, m}=\mathbb{Q}_{p}\left(\zeta_{p^{m+1}}\right)$, then we have $X_{\mathbb{Q}_{p}}\left(\mathbb{Q}_{p}\left(\zeta_{p} \infty\right)\right)=$ $\mathbb{F}_{p}((X))$, where $X=\left(\zeta_{p^{m+1}}-1\right)_{m \geq 0}$.

2.2 Some preparations

We need some preparations to prove Theorem 2.5.
Proposition 2.7. Let E / K be a totally ramified finite separable extension of degree p^{r}. Then for any $x, y \in \mathcal{O}_{E}$, we have

$$
\nu_{K}\left(N_{E / K}(x+y)-N_{E / K}(x)-N_{E / K}(y)\right) \geq \frac{p-1}{p} i(E / K) .
$$

An immediate corollary is
Corollary 2.8. For any $a \in \mathcal{O}_{K}$, there exists an $x \in \mathcal{O}_{E}$ such that $\nu_{K}\left(N_{E / K}(x)-a\right) \geq \frac{p-1}{p} i(E / K)$.
Proof. Let π_{E} be a uniformizer of E. Then $\pi_{K}:=N_{E / K}\left(\pi_{E}\right)$ is a uniformizer of K. For any $a \in \mathcal{O}_{K}$, it is of the form $a=\sum_{n \geq 0}\left[a_{n}\right] \pi_{K}^{n}$ with $a_{n} \in k_{K}$. Then one can check that $x=\sum_{n \geq 0}\left[a_{n}^{\frac{1}{p^{\tau}}}\right] \pi_{E}^{n}$ works.

Proof of Proposition 2.7. Step 1: We first show that if F / K is a subextension in E such that the result holds for E / F and F / K, then the result is true for E / K.

Indeed, for any $x, y \in \mathcal{O}_{E}$, by Proposition 2.7 for E / F, there exists a $z \in \mathcal{O}_{F}$ with $\nu_{F}(z) \geq$ $\frac{p-1}{p} i(E / F)$ such that

$$
N_{E / F}(x+y)=N_{E / F}(x)+N_{E / F}(y)+z .
$$

By Proposition 2.7 for F / E, there exists an $a \in \mathcal{O}_{K}$ with $\nu_{K}(a) \geq \frac{p-1}{p} i(F / K)$ such that

$$
N_{F / K}\left(N_{E / F}(x)+N_{E / F}(y)+z\right)=N_{E / K}(x)+N_{E / K}(y)+N_{F / K}(z)+a .
$$

So we have

$$
\begin{aligned}
\nu_{K}\left(N_{E / K}(x+y)-N_{E / K}(x)-N_{E / K}(y)\right) & =\nu_{K}\left(N_{F / K}(z)+a\right) \\
& \geq \min \left(\nu_{K}\left(N_{F / K}(z)\right), \nu_{K}(a)\right) \\
& \geq \frac{p-1}{p} \min (i(E / F), i(F / K)) \\
& \geq \frac{p-1}{p} i(E / K) \quad(\text { cf. Prop 1.11(4)) }
\end{aligned}
$$

Step 2: We show the result is true when E / K is Galois. Since $\operatorname{Gal}(E / K)$ is a p-group (and hence solvable), by Step 1 , we may assume E / K is moreover cyclic of degree p.

We may assume $\nu_{E}(x) \geq \nu_{E}(y)$ such that $y \neq 0$. Replacing x and y by $\frac{x}{y}$ and 1 , we may assume $y=1$. By the following lemma:

Lemma 2.9 ([Se, p83, Lem 5]). Let E / K be a totally ramified cyclic extension of degree p. Then for any $n \geq 0$ and any $x \in \mathcal{O}_{E}$ with $\nu_{E}(x) \geq n$, we have

$$
N_{E / K}(1+x) \equiv 1+N_{E / K}(x)+T_{E / K}(x) \quad \bmod T_{E / K}\left(\mathfrak{P}_{E}^{2 n}\right) .
$$

we see that $N_{E / K}(1+x)-1-N_{E / K}(x) \in T_{E / K}\left(\mathcal{O}_{E}\right)$. By the following lemma:
Lemma 2.10 ([Se, p83, Lem 4]). Let E / K be a totally ramified cyclic extension of degree p and $m:=(i(E / K)+1)(p-1)$. Then for any $n \geq 0$,

$$
T_{E / K}\left(\mathfrak{P}_{E}^{n}\right)=\mathfrak{P}_{K}^{\left[\frac{m+n}{p}\right]} .
$$

We see that

$$
\nu_{K}\left(N_{E / K}(1+x)-1-N_{E / K}(x)\right) \geq\left[\frac{(i(E / K)+1)(p-1)}{p}\right] \geq \frac{p-1}{p} i(E / K)
$$

as desired. Here, we apply Hasse-Arf theorem (i.e. $i(E / K) \in \mathbb{N}$) implicitly.
Step 3: Assume E / K is a subextension of some totally ramified Galois extension F / K of degree p^{n}. Then the result holds true for E / K.

Indeed, $\operatorname{Gal}(F / E)$ is a subgroup of the p-group $\operatorname{Gal}(F / K)$. Use the following well-known lemma:
Lemma 2.11. Let G be a p-group and $H<G$ be a subgroup. Then $H<N_{G}(H)$ is a strict subgroup of its normalizer in G.

By Galois correspondence, we know that F / K factors as suquential Galois extensions (which are totally widely ramified). So we conclude by first two steps.

Step 4: Now let F be the Galois closure of E / K and K_{1} be the maximal tamely ramified subextension of K in F. Then E and F are linearly disjoint over K. In particular, we have

$$
N_{E / K}(x+y)-N_{E / K}(x)-N_{E / K}(y)=N_{E K_{1} / K_{1}}(x+y)-N_{E K_{1} / K_{1}}(x)-N_{E K_{1} / K_{1}}(y) .
$$

By Step 3, we have

$$
\nu_{K_{1}}\left(N_{E / K}(x+y)-N_{E / K}(x)-N_{E / K}(y)\right) \geq \frac{p-1}{p} i\left(E K_{1} / K_{1}\right) .
$$

Then the result follows from that $\nu_{K_{1}}=e_{K_{1} / K} \nu_{K}$ and that
Lemma 2.12. $i\left(E K_{1} / K_{1}\right)=e_{K_{1} / K} i(E / K)$.
Proof. Recall if M / N is a tamely ramified extension, then we have $\psi_{M / N}(u)=e_{M / N} u$ when $u \geq 0$. Since $\psi_{E K_{1} / K}=\psi_{E K_{1} / K_{1}} \circ \psi_{K_{1} / K}=\psi_{E K_{1} / E} \circ \psi_{E / K}$, the result follows by comparing the first cusp of $\psi_{E K_{1} / K}(u)(u>0)$.

Now, the proof is complete.
Proposition 2.13. Let E / K be a totally ramified separable extension of degree p^{r}. Then for any $x, y \in \mathcal{O}_{E}$ such that $\nu_{E}(x-y) \geq n$, we have

$$
\nu_{K}\left(N_{E / K}(x)-N_{E / K}(y)\right) \geq \phi_{E / K}(n) .
$$

Proof. As the proof of Proposition 2.7, we may assume E / K is a moreover a Galois extension. We may assume $\nu_{E}(x) \geq \nu_{E}(y)$ and $y \neq 0$. Noting that

$$
\nu_{K}\left(N_{E / K}\left(\frac{x}{y}\right)-1\right)=\nu_{K}\left(N_{E / K}(x)-N_{E / K}(y)\right)-\nu_{E}(y)
$$

and that

$$
\phi_{E / K}\left(n-\nu_{E}(y)\right) \geq \phi_{E / K}(n)-\nu_{E}(y)
$$

we may assume $y=1$. When $n=0$, the result is trivial. So we may assume $n \geq 1$; equivalently, $x \in U_{E}^{n}$ and are reduced to showing that $\nu_{K}\left(N_{E / K}(x)-1\right) \geq \phi_{E / K}(n)$.

Lemma 2.14 ([Se, p91, Prop 8]). Let E / K be a totally ramified Galois extension, then for any $m \geq 0$, we have $N_{E / K}\left(U_{E}^{\psi_{E / K}(m)}\right) \subset U_{K}^{m}$ and $N_{E / K}\left(U_{E}^{\psi_{E / K}(m)+1}\right) \subset U_{K}^{m+1}$.

Let m be the integer satisfying $\psi_{E / K}(m) \leq n<\psi_{E / K}(m+1)$. If $\psi_{E / K}(m)=n$, by above lemma, we have $\nu_{K}\left(N_{E / K}(x)-1\right) \geq m=\phi_{E / K}(n)$. If $\psi_{E / K}(m)<n$, we have $\nu_{K}\left(N_{E / K}(x)-1\right) \geq m+1 \geq$ $\phi_{E / K}(n)$, again by above lemma. The proof is complete.

Now, we are able to prove Proposition 2.3 .
Proof of Proposition 2.3: Let $\underline{x}, \underline{y} \in X_{K}(L)$. Fix an $E \in \mathcal{E}_{L / K_{1}}$.
Let $F_{1} \subset F_{2}$ be elements in $\mathcal{E}_{L / E}$. Then by Proposition 2.7, we have

$$
\nu_{F_{1}}\left(x_{F_{1}}+y_{F_{1}}-N_{F_{2} / F_{1}}\left(x_{F_{2}}+y_{F_{2}}\right)\right) \geq \frac{p-1}{p} i\left(F_{2} / F_{1}\right) \geq \frac{p-1}{p} i\left(L / F_{1}\right)
$$

By Proposition 2.13, we have

$$
\nu_{E}\left(N_{F_{1} / E}\left(x_{F_{1}}+y_{F_{2}}\right)-N_{F_{2} / E}\left(x_{F_{2}}+y_{F_{2}}\right)\right) \geq \phi_{F_{1} / E}\left(\frac{p-1}{p} i\left(L / F_{1}\right)\right) \geq \phi_{L / E}\left(\frac{p-1}{p} i\left(L / F_{1}\right)\right)
$$

It remains to show $\lim _{F \rightarrow L} i(L / F)=+\infty$: Let $K_{0} \subset K_{1} \subset \cdots$ be the elementary chain of L / K and then we have $\lim _{n \rightarrow+\infty} i\left(L / K_{n}\right)=+\infty$.

2.3 The proof of main theorem

For any $E \in \mathcal{E}_{L / K}$, define $r(E):=\min \left\{n \in \mathbb{N} \left\lvert\, n \geq \frac{p-1}{p} i(L / E)\right.\right\}$. We have shown that $\lim _{E \rightarrow L} r(E)=+\infty$ and if $E_{1} \subset E_{2}$, then $r\left(E_{1}\right) \leq r\left(E_{2}\right)(c f$. Proposition 1.11 (4)) .

Construction 2.15. For any $E \in \mathcal{E}_{L / K_{1}}$, define $\bar{A}_{E}:=\mathcal{O}_{E} / \mathfrak{P}_{E}^{r(E)}$. By Proposition 2.7 and Corollary 2.8, for any $F \in \mathcal{E}_{L / E}$, the norm map $N_{F / E}: \bar{A}_{F} \rightarrow \bar{A}_{E}$ is a surjective homomorphism of rings. Define

$$
A_{K}(L):=\lim _{E \in \mathcal{\mathcal { E }}_{L / K_{1}}} \bar{A}_{E}
$$

Then $A_{K}(L)$ is a ring.

Let $0 \neq \underline{x}=\left(\bar{x}_{E}\right)_{E} \in A_{K}(L)$. Assume $\bar{x}_{E} \neq 0$ and x_{E} is a lifting of \bar{x}_{E} in \mathcal{O}_{E}. Then $\nu_{E}\left(x_{E}\right)$ only depends on \underline{x} and we denote this value by $\nu(\underline{x})$. Obviously, $\left(A_{K}(L), \nu\right)$ is a complete discrete valuation ring, whose residue field is $\lim _{E \in \mathcal{E}_{L / K_{1}}} k_{E} \cong k_{L}$.

There exists a natural morphism $\iota: \mathcal{O}_{X_{K}(L)} \rightarrow A_{K}(L)$ of monoids by sending $(\underline{x})=\left(x_{E}\right)_{E}$ to $\iota(\underline{x})=\left(\bar{x}_{E}\right)_{E}$, which clearly preserves ν. In particular, $f_{L / K}: k_{L} \rightarrow X_{K}(L)$ induces a morphism $k_{L} \rightarrow A_{K}(L)$ of monoids and an isomorphism of fields $k_{L} \cong k_{A_{K}(L)}$.

Lemma 2.16. The morphism $\iota: \mathcal{O}_{X_{K}(L)} \rightarrow A_{K}(L)$ is an isomorphism of rings.
Proof. Since ι preserves ν, it is automatically injective as long as we show it is a ring homomorphism. For this purpose, we need to show ι also preserves additions on both sides. Let $\underline{x}, \underline{y} \in \mathcal{O}_{X_{K}(L)}$ and $\underline{z}=\underline{x}+\underline{y}$. By Proposition 2.3 , for any $E \in \mathcal{E}_{L / K_{1}}$, we have

$$
z_{E}=\lim _{F \rightarrow L} N_{F / E}\left(x_{F}+y_{F}\right)
$$

Taking reduction modulo $\mathfrak{P}_{E}^{r(E)}$, we see that for F sufficiently close to L,

$$
\bar{z}_{E}=N_{F / E}\left(\bar{x}_{F}+\bar{y}_{F}\right)=\bar{x}_{E}+\bar{y}_{E}
$$

which is exactly what we want. It remains to show ι is surjective. For any $\underline{x} \in A_{K}(L)$, we choose a lifting \hat{x}_{E} of \bar{x}_{E} in \mathcal{O}_{E}. Then for any $F_{1} \subset F_{2} \in \mathcal{E}_{L / K_{1}}, \nu_{F_{1}}\left(N_{F_{2} / F_{1}}\left(\hat{x}_{F_{2}}\right)-\hat{x}_{F_{1}}\right) \geq r\left(F_{1}\right)$. By Proposition 2.13, we have

$$
\nu_{E}\left(N_{F_{2} / E}\left(\hat{x}_{F_{2}}\right)-N_{F_{1} / E}\left(\hat{x}_{F_{1}}\right)\right) \geq \phi_{F_{1} / E}\left(r\left(F_{1}\right)\right) \geq \phi_{L / E}\left(r\left(F_{1}\right)\right)
$$

Since $\lim _{F \rightarrow L} r(F)=+\infty$, we know that $\left\{N_{F / E}\left(\hat{x}_{F}\right)\right\}_{F \in \mathcal{E}_{L / E}}$ converges to a unique element $x_{E} \in \mathcal{O}_{E}$ lifting \bar{x}_{E} and satisfying $N_{F / E}\left(x_{F}\right)=x_{E}$. So $\left(x_{E}\right)_{E} \in \mathcal{O}_{X_{K}(L)}$ which is carried to \underline{x} by ι.

To conclude Theorem 2.5, we are reduced to the following lemma:
Lemma 2.17. The map $\circ f_{L / K}: k_{L} \rightarrow A_{K}(L)$ is an homomorphism of rings.
Proof. Since for any $a, b \in k_{L},[a]+[b] \equiv[a+b] \bmod p$, it suffices to show that $A_{K}(L)$ is an $\mathbb{F}_{p^{-}}$ algebra. For this, it is enough to show that for any $E \in \mathcal{E}_{L / K_{1}}, \nu_{E}(p) \geq \frac{p-1}{p} i(L / E)$. Fix an extension $F \in \mathcal{E}_{L / E}$. We want to show $\nu_{E}(p) \geq \frac{p-1}{p} i(F / E)$. As in the proof of Proposition 2.7, we are reduced to the case where F / E is a totally ramified finite Galois extension of degree p^{r}.

Lemma 2.18 ([Se, p71, Exer 3]). Let E / K be a finite Galois extension and $i \geq 1$. If $i \geq \frac{\nu_{E}(p)}{p-1}$, then $\operatorname{Gal}(E / K)_{i}=1$.

Let E_{1} / E be subextension in F / E which is totally ramified cyclic of degree p. Then the above lemma implies that

$$
i\left(E_{1} / E\right) \leq \frac{\nu_{E_{1}}(p)}{p-1}=\frac{p}{p-1} \nu_{E}(p)
$$

So we conclude that $\nu_{E}(p) \geq \frac{p-1}{p} i\left(E_{1} / E\right) \geq \frac{p-1}{p} i(F / E)$. We win!

3 Functoriality of X_{K}

In this section, we show X_{K} is a functor from the category of infinite APF extensions of K to the category of fields in characteristic p. We recall the following result:

Lemma 3.1 ([Se, p89, Lem 6]). Let $L=\cup_{i \in I} L_{i}$ be an extension of K with I a filtered set and $\left\{L_{i}\right\}_{i \in I}$ an increasing family of subextensions. Let M / L be an extension of degree n. Then there exists an $i \in I$ and an extension M_{i} / L_{i} of degree n such that M_{i} and L are linearly disjoint over L_{i} and $M_{i} L=M$. If both M_{i} and M_{j} satisfy the above conditions, then there exists a $k \geq i, j$ such that $M_{i} L_{k}=M_{j} L_{k}=M_{k}$. In particular, M_{k} satisfies the same conditions. If moreover M / L is separable (resp. Galois), one may choose M_{i} such that M_{i} / L_{i} is also separable (resp. Galois).

Remark 3.1. In the case for M / L Galois, we may further assume $\operatorname{Gal}\left(M_{i} / L_{i}\right) \cong \operatorname{Gal}(M / L)$.

3.1 X_{K} as a functor

We fix an infinite APF extension L / K.
Construction 3.2. Let M / K be an infinite APF extension and $\tau: L \rightarrow M$ be a K-homomorphism of degree n. We construct a homomorphism $X_{K}(\tau): X_{K}(L) \rightarrow X_{K}(M)$ as follows:

Put $\mathcal{E}_{M, \tau}=\left\{F \in \mathcal{E}_{M / K} \mid \tau(L) \otimes_{\tau(L) \cap F} F \cong M\right\}$ and $\mathcal{E}_{L, \tau}=\left\{\tau^{-1}(\tau(L) \cap F) \mid F \in \mathcal{E}_{M, \tau}\right\}$. By Lemma 3.1, both $\mathcal{E}_{L, \tau}$ and $\mathcal{E}_{M, \tau}$ are cofinal in \mathcal{E}_{L} and \mathcal{E}_{M}, respectively. Then we define

$$
X_{K}(\tau): X_{K}(L)=\lim _{E \in \mathscr{\mathcal { E } _ { L } , \tau}} E \rightarrow \lim _{F \in \mathscr{\mathcal { E } _ { M } , \tau}} F=X_{K}(M)
$$

by sending $\underline{x}=\left(x_{\tau^{-1}(\tau(L) \cap F)}\right)$ to $\left(\tau\left(x_{\tau^{-1}(\tau(L) \cap F)}\right)\right)_{F}$. One can check $X_{K}(\tau)$ is well-defined. Clearly, $X_{K}(\tau)$ preserves valuations (as τ does so).

Example 3.3. If $\tau: L \rightarrow M$ is an isomorphism with inverse τ^{-1}, then $X_{K}(\tau)$ is also an isomorphism whose inverse is $X_{K}\left(\tau^{-1}\right)$.

Proposition 3.4. The homomorphism $X_{K}(\tau)$ above is separable of degree n. If moreover $M / \tau(L)$ is Galois, then so is $X_{K}(M) / X_{K}(\tau)\left(X_{K}(L)\right)$ and in this case, X_{K} induces an isomorphism

$$
\operatorname{Gal}(M / \tau(L)) \cong \operatorname{Gal}\left(X_{K}(M) / X_{K}(\tau)\left(X_{K}(L)\right)\right) .
$$

Proof. By Example 3.3, we may assume $\tau: L \rightarrow M$ is the natural inclusion $L \subset M$. By Galois correspondence, we may assume M / L is already finite Galois. Let K_{0} be the maximal unramified subextension of K in M.

Now, let $\mathcal{E}_{M, G}=\left\{F \in \mathcal{E}_{M / K_{0}} \mid L \otimes_{L \cap F} F=M \& F / L \cap F\right.$ is Galois $\}$ and $\mathcal{E}_{L, G}=\{F \cap L \in$ $\left.\mathcal{E}_{L / K_{0} \cap L} \mid F \in \mathcal{E}_{M, G}\right\}$. By Lemma 3.1, both $\mathcal{E}_{L, G}$ and $\mathcal{E}_{M, G}$ are cofinal in \mathcal{E}_{L} and \mathcal{E}_{M}, respectively. In
particular, we have $G=\operatorname{Gal}(M / L)=\operatorname{Gal}(F / F \cap L)$ for any $F \in \mathcal{E}_{M, G}$. By construction of $X_{K}(\tau)$ above, for any $\sigma \in G$ and any $\underline{x}=\left(x_{F}\right)_{F \in \mathcal{E}_{M, G}} \in X_{K}(M)$, we have $X_{K}(\sigma)(\underline{x})=\left(\sigma\left(x_{F}\right)\right)_{F \in \mathcal{E}_{M, G}}$. So $X_{K}(M)^{G}=X_{K}(L)$. We claim that G acts on $X_{K}(M)$ faithfully. Granting this, by Galois' theorem, we see that $X_{K}(M) / X_{K}(L)$ is finite Galois with Galois group G.

It remains to check that G acts on $X_{K}(M)$ faithfully. Let $\sigma \in G$ such that $X_{K}(\sigma)=1$. Then we see σ acts trivially on $k_{X_{K}(M)} \cong k_{M}$. In particular, for any $F \in \mathcal{E}_{M, G}$ with $E=F \cap L$, we have σ acts on k_{F} trivially. Let $\underline{\pi}=\left(\pi_{F}\right)_{F \in \mathcal{E}_{M, G}}$ be a uniformizer of $X_{K}(M)$. Then π_{F} is also a uniformizer of F for each F. Since $X_{K}(\sigma)$ acts on $\underline{\pi}$ trivially, we see that $\sigma\left(\pi_{F}\right)=\pi_{F}$. Therefore, $i_{F}(\sigma)=+\infty$, which forces that $\sigma=\operatorname{id}_{F}$. So $\sigma=1$.

3.2 Fontaine-Wintenberger's theorem

Construction 3.5. Let M / L be an algebra separable extension in \bar{K}. Then $M=\cup_{E \in \mathcal{E}_{M / L}} E$ and for any $E \in \mathcal{E}_{M / L}, X_{K}(E)$ is well-defined. The functoriality of X_{K} allows us to define $X_{L / K}(M):=$ $\operatorname{colim}_{E \in \mathcal{E}_{M / L}} X_{K}(L)$. This is an algebraic separable extension of $X_{K}(L)$ and if M / L is Galois, then so in $X_{L / K}(M) / X_{K}(L)$ such that $\operatorname{Gal}(L / M) \cong \operatorname{Gal}\left(X_{L / K}(M) / X_{K}(L)\right)$. In particular, we can define $X_{L / K}(\bar{K})$.

The main result is
Theorem 3.6. The $X_{L / K}(\bar{K})$ is a separable closure of $X_{K}(L)$. In particular, we have a canonical isomorphism $G_{X_{K}(L)} \cong G_{L}$.

Remark 3.2. When $K=\mathbb{Q}_{p}$ and $L=\mathbb{Q}_{p}\left(\zeta_{p \infty}\right)$, the isomorphism

$$
G_{\mathbb{Q}_{p}\left(\zeta_{p} \infty\right)} \cong G_{\mathbb{F}_{p}((X))} \cong G_{\mathbb{F}_{p}\left(\left(X X^{\frac{1}{p}}\right)\right)}
$$

with $X=\left(\zeta_{p^{n+1}}-1\right)_{n \geq 0}$ is well-known as Fontaine-Wintenberger theorem in classical p-adic Hodge theory.

Theorem 3.6 is an immediate consequence of the following proposition:
Proposition 3.7. (1) For any separable algebraic extension $X / X_{K}(L)$, there exists a separable algebraic extension M / L such that $X \cong X_{L / K}(M)$.
(2) For any separable algebraic extensions M_{1} and M_{2}, we have

$$
\operatorname{Hom}_{L}\left(M_{1}, M_{2}\right)=\operatorname{Hom}_{X_{K}(L)}\left(X_{K}\left(M_{1}\right), X_{K}\left(M_{2}\right)\right)
$$

Proof. The item (2) is easy: By several reductions, we may assume M_{1} and M_{2} are both finite over L. Then by replacing M_{2} / L by its Galois closure, we may assume M_{2} / L is finite Galois and then are reduced to Proposition 3.4 .

For (1), by functoriality of X_{k} and Item (2), we may assume $X / X_{K}(L)$ is finite of degree d.
Let $f(T)=T^{d}+\underline{a}_{1} T^{d-1}+\cdots+\underline{a}_{d}$ be an irreducible polynomial over $\mathcal{O}_{X_{K}(L)}$ such that $X \cong$ $X_{K}(L)[T] /(f(T))$. Let $E_{1} \subset E_{2} \subset \cdots$ be subextensions in $\mathcal{E}_{L / K_{1}}$ such that $L=\cup_{n} E_{n}$. Then $X_{K}(L) \cong \lim _{n} E_{n}$ and we write $\underline{a}_{i}=\left(a_{i, n}\right)_{n \geq 1}$. Define $f_{n}(T)=T^{d}+a_{1, n} T^{d-1}+\cdots+a_{d, n}$.

Let $\Delta(g)$ be the discriminant of a polynomial $g(T)=T^{d}+x_{1} T^{d-1}+\cdots+x_{d}$ over a certain field. Then there exists a polynomial $D\left(X_{1}, \ldots, X_{d}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{d}\right]$ such that $\Delta(g)=D\left(x_{1}, \ldots, x_{d}\right)$.

Lemma 3.8. For $n \gg 0, \nu_{X_{K}(L)}(\Delta(f))=\nu_{E_{n}}\left(\Delta\left(f_{n}\right)\right)$.
Proof. Recall $\lim _{n \rightarrow \infty} r\left(E_{n}\right)=+\infty$. So for $n \gg 0, r\left(E_{n}\right) \geq \nu_{X_{K}(L)}(\Delta(f))=\nu_{X_{K}(L)}\left(D\left(\underline{a}_{1}, \ldots, \underline{a}_{d}\right)\right)$. Since the coefficients of D belong to \mathbb{Z}, we see that

$$
\Delta(f)=D\left(\underline{a}_{1}, \ldots, \underline{a}_{d}\right)=\left(D\left(a_{1, n}, \ldots, a_{d, n}\right)\right)_{n \geq 1}=\left(\Delta\left(f_{n}\right)\right)_{n \geq 1} \in{\underset{\check{n}}{ }}_{\lim _{n}}^{\bar{A}_{E_{n}}}=\mathcal{O}_{E_{n}} / \mathfrak{P}_{E_{n}}^{r\left(E_{n}\right)}
$$

So the result follows from the definition of $\nu_{X_{K}(L)}$.
In particular, we may assume for any $n \geq 0, f_{n}(T)$ is separable (i.e. $\Delta\left(f_{n}\right) \neq 0$). Let x_{n} be a root of $f_{n}(T)=0$, and let $F_{n}=E_{n}\left(x_{n}\right)$ and $L_{n}=L\left(x_{n}\right)=L F_{n}$. Since $\lim _{n \rightarrow+\infty} i\left(L / E_{n}\right)=+\infty$, we may assume $i\left(L / E_{n}\right) \geq d \nu_{X_{K}(L)}(\Delta(f))$ for all n. Then we have

Lemma 3.9. For any $u \geq d \nu_{X_{K}(L)}(\Delta(f)), G_{E_{n}}^{u} \subset G_{F_{n}}$.
Proof. For any $\sigma \in G_{E_{n}}^{u}$, assume $\sigma\left(x_{n}\right) \neq x_{n}$, we have

$$
\begin{aligned}
\nu_{F_{n}}\left(\sigma\left(x_{n}\right)-x_{n}\right) & >\min _{x \in \mathcal{O}_{F_{n}}}\left(\nu_{F_{n}}(\sigma(x)-x)-1\right)=i_{F_{n}}(\sigma) \\
& \geq \psi_{F_{n} / E_{n}}(u) \quad(\text { by Lemma 1.8 }(1)) \\
& \geq u \geq d \nu_{X_{K}(L)}(\Delta(f))=d \nu_{E_{n}}\left(\Delta\left(f_{n}\right)\right) \\
& \geq \nu_{F_{n}}\left(\Delta\left(f_{n}\right)\right) \geq 2 \nu_{F_{n}}\left(\sigma\left(x_{n}\right)-x_{n}\right),
\end{aligned}
$$

which is impossible. So we must have $\sigma\left(x_{n}\right)=x_{n}$, which forces that $\sigma \in G_{F_{n}}$.
By applying above Lemma to $u=i\left(L / E_{n}\right)$, we see that

$$
G_{E_{n}}=G_{E_{n}}^{i\left(L / E_{n}\right)} G_{L} \subset G_{F_{n}} G_{L} \subset G_{E_{n}} .
$$

As a consequence, we deduce that L / E_{n} and F_{n} / E_{n} are linearly disjoint:
Lemma 3.10. $E_{n}=L \cap F_{n}$.
Using this, one can conclude that
Lemma 3.11. $i\left(L_{n} / F_{n}\right)=\psi_{F_{n} / E_{n}}\left(i\left(L / E_{n}\right)\right)$.

Proof. Since $G_{E_{n}}^{u} \cap G_{F_{n}}=G_{F_{n}}^{\psi_{F_{n} / E_{n}}(u)}$, by Lemma 3.9. for any $u \geq d \nu_{X_{K}(L)}(\Delta(f))$, we have

$$
G_{E_{n}}^{u}=G_{F_{n}}^{\psi_{F_{n} / E_{n}}(u)}
$$

Therefore, for $u \geq i\left(L / E_{n}\right)$, we have

$$
G_{F_{n}}^{\psi_{F_{n} / E_{n}}(u)} G_{L_{n}}=G_{E_{n}}^{u}\left(G_{L} \cap G_{F_{n}}\right)=G_{E_{n}}^{u} G_{L} \cap G_{F_{n}} .
$$

Applying $u=i\left(L / E_{n}\right)$, we have

$$
G_{F_{n}}^{\psi_{F_{n} / E_{n}}\left(i\left(L / E_{n}\right)\right)} G_{L_{n}}=G_{E_{n}}^{i\left(L / E_{n}\right)} G_{L} \cap G_{F_{n}}=G_{E_{n}} \cap G_{F_{n}}=G_{F_{n}},
$$

which implies that $i\left(L_{n} / F_{n}\right) \geq \psi_{F_{n} / E_{n}}\left(i\left(L / E_{n}\right)\right)$.
If this inequality is strict, then there exists some $j>i\left(L / E_{n}\right)$ such that $G_{F_{n}}^{\psi_{F_{n} / E_{n}}(j)} G_{L_{n}}=G_{F_{n}}$, which implies that $G_{F_{n}} \subset G_{E_{n}}^{j} G_{L}$. Let F be the field such that $G_{F}=G_{E_{n}}^{j} G_{L}$. Then by the choice of j, we see that F / E_{n} is a proper extension and $F \subset L$. On the other hand, it follows from that $G_{F_{n}} \subset G_{F}$ that $F \subset F_{n}$. So we see that $F \subset L \cap F_{n}$ is a proper extension of E_{n}, which violates to Lemma 3.10. So we deduce $i\left(L_{n} / F_{n}\right)=\psi_{F_{n} / E_{n}}\left(i\left(L / E_{n}\right)\right)$ as desired.

In particular, L_{n} / F_{n} is totally widely ramified. Let $r_{n}=\min \left\{r \in \mathbb{N} \left\lvert\, r \geq \frac{p-1}{p} i\left(L_{n} / F_{n}\right)\right.\right\}$. By Construction 2.15, we see that $\mathcal{O}_{X_{K}\left(L_{n}\right)}=A_{K}\left(L_{n}\right) \rightarrow \bar{A}_{F_{n}}=\mathcal{O}_{F_{n}} / \mathfrak{P}_{F_{n}}^{r_{n}}$ is surjective. Let $y_{n} \in \mathcal{O}_{X_{K}\left(L_{n}\right)}$ be a lifting of reduction of x_{n} in $\bar{A}_{F_{n}}$.

We claim that $\lim _{n \rightarrow+\infty} f\left(y_{n}\right)=0$. Granting this, by replacing $\left(y_{n}\right)_{n \geq 1}$ by a subsequence, we may assume $y=\lim _{n \rightarrow+\infty} y_{n}$ exists. So $f(y)=0$.

Lemma 3.12 (Krasner's Lemma). Let K be a complete non-archimedean field with separable closure \bar{K}. For any $a \in \bar{K}$ with all conjugations $a_{1}=a, a_{2}, \ldots, a_{d}$, if $b \in \bar{K}$ such that $|b-a|<\min _{2 \leq i \leq d}(\mid a-$ $\left.a_{i} \mid\right)$, then $K(a) \subset K(b)$.

For $n \gg 0$, applying Krasner's Lemma to $a=y$ and $b=y_{n}$, we have

$$
X \cong X_{K}(L)(y) \subset X_{K}(L)\left(y_{n}\right) \subset X_{K}\left(L_{n}\right) .
$$

On the other hand, we have

$$
\left[X: X_{K}(L)\right]=d \geq\left[L_{n}: L\right]=\left[X_{K}\left(L_{n}\right): X_{K}(L)\right] .
$$

So we conclude that $X=X_{K}\left(L_{n}\right)$ and complete the proof.
Now, we are reduced to showing that $\lim _{n \rightarrow+\infty} \nu_{X_{K}(L)}\left(f\left(y_{n}\right)\right)=+\infty$. Since L_{n} / F_{n} is totally ramified, we have

$$
\nu_{X_{K}\left(L_{n}\right)}\left(f\left(y_{n}\right)\right)=\nu_{F_{n}}\left(f\left(y_{n}\right)_{F_{n}}\right),
$$

where $f\left(y_{n}\right)_{F_{n}}$ is the projection of $f\left(y_{n}\right)$ along $X_{K}\left(L_{n}\right) \cong \lim _{F \in \mathcal{E}_{L_{n} / K}} F \rightarrow F_{n}$. Since L / E_{n} and F_{n} / E_{n} are linear disjoint, we see that as an element in $X_{K}(L) \subset X_{K}\left(L_{n}\right)$, the projection of \underline{a}_{i} along $X_{K}\left(L_{n}\right) \rightarrow F_{n}$ is exactly $a_{i, n}$. By construction of y_{n}, we know that as an element in $\bar{A}_{F_{n}}=\mathcal{O}_{F_{n}} / \mathfrak{P}_{F_{n}}^{r_{n}}$, $f\left(y_{n}\right)_{F_{n}}=f_{n}\left(x_{n}\right)=0$. Therefore, $\nu_{F_{n}}\left(f\left(y_{n}\right)_{F_{n}}\right) \geq r_{n}$ and hence
$\nu_{X_{K}(L)}\left(f\left(y_{n}\right)\right) \geq \frac{1}{d} \nu_{X_{K}\left(L_{n}\right)}\left(f\left(y_{n}\right)\right) \geq \frac{r_{n}}{d} \geq \frac{p-1}{d p} i\left(L_{n} / F_{n}\right)=\frac{p-1}{d p} \psi_{F_{n} / E_{n}}\left(i\left(L / E_{n}\right)\right) \geq \frac{p-1}{d p} i\left(L / E_{n}\right)$.
Then the claim follows from that $\lim _{n \rightarrow+\infty} i\left(L / E_{n}\right)=+\infty$.
Remark 3.3. Let L_{n} be as above. By Proposition 3.7(2), we know that for $n \gg 0, L_{n}$'s are isomorphic to each other such that $\left[L_{n}: L\right]=d$. Since $\sharp\left(\operatorname{Hom}_{L}\left(L_{n}, \bar{K}\right)\right)=\left[L_{n}: L\right]$, by replacing L_{n} 's by a certain subsequence, we may assume $L_{1}=L_{2}=\cdots=: M$. Then $[M: L]=d$ such that $X_{K}(M)=X$.

4 Ramification theory

Let L / K be an infinite APF extension. We study the ramification theory of extensions of $X_{K}(L)$ in this section.

Definition 4.1. Let σ be an automorphism of a local field X and $\pi \in \mathcal{O}_{X}$ be a uniformizer. Define

$$
i_{X}(\sigma)=\left\{\begin{array}{rc}
\nu_{X}\left(\frac{\sigma(\pi)}{\pi}-1\right), & \text { if } \sigma \text { acts on } k_{X} \text { trivially } \\
-1, & \text { else }
\end{array} .\right.
$$

Let G be a group which acts on X. Then for any $u \geq-1$, define $G_{u}=\left\{\sigma \in G \mid i_{X}(\sigma) \geq u\right\}$.

4.1 Ramification theory of $X_{K}(L)$

From now on, let $X=X_{K}(L)$ and we equip $\operatorname{Aut}(X)=\{\sigma: X \rightarrow X \mid \sigma$ is continuous $\}$ with the topology induced by $\left\{\operatorname{Aut}(X)_{u}\right\}_{u \geq-1}$.

Proposition 4.2. Let σ be a K-automorphism of L. Then there exists an $E \in \mathcal{E}_{L / K}$ such that for any $F \in \mathcal{E}_{L / E}, i_{F}(\sigma)=i_{X}\left(X_{K}(\sigma)\right)$.

We first give some interesting applications of this proposition.
Lemma 4.3. For any finite Galois extension L^{\prime} / L and any $E^{\prime} \in \mathcal{E}_{L^{\prime} / K}$ such that $L^{\prime}=L E^{\prime}$, there exists an $F^{\prime} \in \mathcal{E}_{L^{\prime} / E^{\prime}}$ such that
(1) $L^{\prime}=L E^{\prime}$;
(2) Put $F=F^{\prime} \cap L$, then F^{\prime} / F is finite Galois with $\operatorname{Gal}\left(F^{\prime} / F\right) \cong \operatorname{Gal}\left(L^{\prime} / L\right)$;
(3) For any $u \geq-1$, we have $\operatorname{Gal}\left(F^{\prime} / F\right)_{u} \cong \operatorname{Gal}\left(X_{K}\left(L^{\prime}\right) / X\right)_{u}$.

Proof. Let $E_{0} \in \mathcal{E}_{L^{\prime} / K}$ such that for any $\sigma \in \operatorname{Gal}\left(L^{\prime} / L\right)$ and any $E \in \mathcal{E}_{L^{\prime} / E_{0}}, i_{X_{K}\left(L^{\prime}\right)}\left(X_{K}(\sigma)\right)=i_{E}(\sigma)$. Let $E_{1}=E^{\prime} E_{0}$ and $F^{\prime}=\prod_{\sigma \in \operatorname{Gal}\left(L^{\prime} / L\right)} \sigma\left(E_{1}\right)$. We claim F^{\prime} satisfies all desired conditions:

For (1): Since $E^{\prime} \subset F^{\prime}$, we have $L F^{\prime}=L^{\prime}$.
For (2): Clearly, $\operatorname{Gal}\left(L^{\prime} / L\right)$ acts on F^{\prime}. We claim this action is faithful: Indeed, for any $\sigma \in$ $\operatorname{Gal}\left(L^{\prime} / L\right)$, since $E_{0} \subset F^{\prime}$, we have $i_{F^{\prime}}(\sigma)=i_{X_{K}\left(L^{\prime}\right)}\left(X_{K}(\sigma)\right)$. So σ acts on F^{\prime} trivially if and only if $X_{K}(\sigma)=1$, which happens exactly when $\sigma=1$.

Now, the second condition follows from that $F=F^{\prime} \cap L=F=\left(F^{\prime}\right)^{\mathrm{Gal}\left(L^{\prime} / L\right)}$ and Proposition 3.4 (i.e. $\operatorname{Gal}\left(L^{\prime} / L\right) \cong \operatorname{Gal}\left(X_{K}\left(L^{\prime}\right) / X\right)$).

For (3): This follows from that $i_{F^{\prime}}(\sigma)=i_{X_{K}\left(L^{\prime}\right)}\left(X_{K}(\sigma)\right)$ directly.
Corollary 4.4. Assume L / K is Galois and define $G=\operatorname{Gal}(L / K)$. Then G acts on X faithfully whose topology is compatible with that of $\operatorname{Aut}(X)$. More precisely, we can identify the ramification groups

$$
\operatorname{Gal}(L / K)^{u}=G_{\psi_{L / K}(u)}=\left\{\sigma \in G \mid i_{X}\left(X_{K}(\sigma)\right) \geq \psi_{L / K}(u)\right\} .
$$

Proof. The faithfulness of G-action on $X_{K}(L)$ can be confirmed as in the proof of Proposition 3.4 Let $\sigma \in G$ such that $X_{K}(L)$ act on X trivially. Then it acts on $k_{X_{K}(L)}=k_{L}$ trivially. Let $\pi=$ $\left(\pi_{E}\right)_{E \in \mathcal{E}_{L / K_{1}, G}}$ be a uniformizer of X, where $\mathcal{E}_{L / K_{1}, G}=\left\{E \in \mathcal{E}_{L / K_{1}} \mid E / K\right.$ is Galois $\}$. Then π_{E} is also a uniformizer of E. Since $X_{K}(\sigma)(\pi)=\pi$, we have $\sigma\left(\pi_{E}\right)=\pi_{E}$ for all E. So $\sigma=1$.

For any $\sigma \in G$, let $E_{\sigma} \in \mathcal{E}_{L / K}$ be as in Proposition 4.2 and $\mathcal{E}_{\sigma}:=\mathcal{E}_{L / E_{\sigma}} \cap \mathcal{E}_{L / K_{1}, G}$. Then we have

$$
\operatorname{Gal}(L / K)^{u}={\underset{E \in \in \mathcal{\mathcal { E } _ { \sigma }}}{ } \operatorname{Gal}(E / K)^{u} \text { and } \operatorname{Gal}(E / K)^{v}=\operatorname{Gal}(E / K)_{\psi_{E / K}(v)}}
$$

By Proposition 4.2, $i_{X}\left(X_{K}(\sigma)\right)=i_{E}(\sigma)$ for any $E \in \mathcal{E}_{\sigma}$. Therefore
$X_{K}(\sigma) \in G_{\psi_{L / K}(u)} \Leftrightarrow \sigma \in \operatorname{Gal}(E / K)_{\psi_{L / K}(u)}=\operatorname{Gal}(E / K)^{\phi_{E / K}\left(\psi_{L / K}(u)\right)}, \forall E \in \mathcal{E}_{\sigma} \Leftrightarrow \sigma \in \operatorname{Gal}(L / K)^{u}$, where the second equivalence follows from that for a fixed $u \geq-1, \lim _{E \rightarrow L} \phi_{E / K}\left(\psi_{L / K}(u)\right)=u$.

Corollary 4.5. Let M / K be a Galois extension of K containing L. Then the isomorphism $\operatorname{Gal}(M / L) \cong$ $\operatorname{Gal}\left(X_{L / K}(M) / X\right)$ preserves ramifications in the following sense: For any $u \geq-1$,

$$
\operatorname{Gal}\left(X_{L / K}(M) / X\right)^{u}=\operatorname{Gal}(M / L)^{u}\left(:=\operatorname{Gal}(M / K)^{\phi_{L / K}(u)} \cap \operatorname{Gal}(M / L)\right) .
$$

In particular, by taking $M=\bar{K}$ and applying Theorem 3.6, we have

$$
G_{X}^{u}=G_{L}^{u}\left(:=G_{L} \cap G_{K}^{\phi_{L / K}(u)}\right) .
$$

Proof. Fix a $u \geq-1$ and a $K_{u} \in \mathcal{E}_{L / K}$ such that for any $E \in \mathcal{E}_{L / K u}, \phi_{E / K}(u)=\phi_{L / K}(u)$. Let $E_{1} \subset E_{2} \subset \cdots \subset M$ be finite Galois extensions of K containing K_{u} such that $\cup_{n \geq 1} E_{n}=M$. Put $L_{n}=L E_{n}$ and then they are finite Galois over L. By Lemma 4.3, one can find $F_{n} \subset \mathcal{E}_{L_{n} / E_{n}}$ such
that (1) $L F_{n}=L_{n}$ and (2) $F_{n} / L \cap F_{n}$ is finite Galois with Galois group $\operatorname{Gal}\left(F_{n} / L \cap F_{n}\right) \cong \operatorname{Gal}\left(L_{n} / L\right)$ such that for any $u \geq-1, \operatorname{Gal}\left(F_{n} / L \cap F_{n}\right)_{u} \cong \operatorname{Gal}\left(X_{K}\left(L_{n}\right) / X\right)_{u}$. In particular, L and F_{n} are linearly disjoint over $L \cap F_{n}$ and $\psi_{X_{K}\left(L_{n}\right) / X}=\psi_{F_{n} / F_{n} \cap L}$.

Since $\operatorname{Gal}\left(X_{L / K}(M) / X\right)^{u}=\varliminf_{\longleftarrow}^{\lim } \operatorname{Gal}\left(X_{K}\left(L_{n}\right) / X\right)^{u}, \sigma \in \operatorname{Gal}\left(X_{L / K}(M) / X\right)^{u}$ if and only if for any $n \geq 1, i_{X_{K}\left(L_{n}\right)}(\sigma) \geq \psi_{X_{K}\left(L_{n}\right) / X}(u)$; equivalently, for any $n \geq 1, i_{F_{n}}(\sigma) \geq \psi_{F_{n} / F_{n} \cap L}(u)$. Since

$$
\psi_{F_{n} / F_{n} \cap L}(u)=\psi_{F_{n} / K}\left(\phi_{F_{n} \cap L / K}(u)\right)=\psi_{F_{n} / K}\left(\phi_{L / K}(u)\right)\left(\because K_{u} \subset E_{n} \subset F_{n} \cap L\right),
$$

$\sigma \in \operatorname{Gal}\left(X_{L / K}(M) / X\right)^{u}$ if and only if $\sigma \in \operatorname{Gal}\left(F_{n} / K\right)_{\psi_{F_{n} / K}\left(\phi_{L / K}(u)\right)}=\operatorname{Gal}\left(F_{n} / K\right)^{\phi_{L / K}(u)}$ for any $n \geq 1$; equivalently, $\sigma \in \operatorname{Gal}(M / K)^{\phi_{L / K}(u)} \cap \operatorname{Gal}(M / L)=\operatorname{Gal}(M / L)^{u}$, because $\cup_{n \geq 1} F_{n}=M$.

Corollary 4.6. Let M / L be a separable algebraic extension. Then M / K is APF if and only if $X_{L / K}(M) / X$ is. If this is the case and moreover M / L is infinite, then there exists a canonical isomorphism $X_{K}(M) \cong X_{X}\left(X_{L / K}(M)\right)$.

Proof. By Corollary 4.5, we have

$$
\begin{aligned}
& {\left[G_{X}: G_{X}^{u} G_{X_{L / K}(M)}\right]=\left[G_{L}: G_{L}^{u} G_{M}\right]=\left[G_{L}:\left(G_{K}^{\phi_{L / K}(u)} \cap G_{L}\right) G_{M}\right] } \\
= & {\left[G_{L}: G_{K}^{\phi_{L / K}(u)} G_{M} \cap G_{L}\right]=\left[G_{K}^{\phi_{L / K}(u)} G_{L}: G_{K}^{\phi_{L / K}(u)} G_{M}\right] . }
\end{aligned}
$$

Since $\left[G_{K}: G_{K}^{\phi_{L / K}(u)} G_{L}\right]<+\infty$ (as L / K is APF), $G_{X}^{u} G_{X_{L / K}(M)}$ is open in G_{X} if and only if $G_{K}^{\phi_{L / K}(u)} G_{M}$ is open in G_{K}. So $X_{L / K}(M)$ is APF if and only if M / K is so.

It remains to construct an isomorphism $j: X_{K}(M) \stackrel{\cong}{\rightrightarrows} X_{X}\left(X_{L / K}(M)\right)$. We remark that $\mathcal{E}_{M / L}=$ $\mathcal{E}_{X_{L / K}(M) / X}$ by Proposition 3.7 (2).

For any $\underline{x}=\left(x_{E}\right)_{E \in \mathcal{E}_{M / K}} \in X_{K}(M)$ and for any $F \in \mathcal{E}_{M / L}$, define $x_{F} \in X_{K}(F)$ by $x_{F}=$ $\left(x_{E}\right)_{E \in \mathcal{E}_{F / K}}$. We claim that $\left(x_{F}\right)_{F \in \mathcal{E}_{M / L}}$ defines an element in $X_{X}\left(X_{L / K}(M)\right)$. Indeed, for any $F \subset F^{\prime}$ in $\mathcal{E}_{M / L}$, by Lemma 3.1, one can find extensions E_{n}^{\prime} / E_{n} such that (1) E_{n}^{\prime} / E_{n} and F / E_{n} are linearly disjoint; (2) $F^{\prime}=F E_{n}^{\prime}$; and (3) $F=\cup_{n \geq 1} E_{n}$. In particular, we have $x_{F^{\prime}}=\left(x_{E_{n}^{\prime}}\right)_{n \geq 1}$ and $x_{F}=\left(x_{E_{n}}\right)_{n \geq 1}$. By functoriality of X_{K}, we see that

$$
N_{X_{K}\left(F^{\prime}\right) / X_{K}(F)}\left(x_{F^{\prime}}\right)=\left(N_{F^{\prime} / F}\left(x_{E_{n}^{\prime}}\right)\right)_{n \geq 1}=\left(N_{E_{n}^{\prime} / E_{n}}\left(x_{E_{n}^{\prime}}\right)\right)_{n \geq 1}=\left(x_{E_{n}}\right)_{n \geq 1}=x_{F} .
$$

So we get a morphism $j: X_{K}(M) \rightarrow X_{X}\left(X_{L / K}(M)\right)$ sending \underline{x} to $\left(x_{F}\right)_{F}$, which obviously preserves multiplications.

The map j is clearly injective and we now show that it is also surjective. Indeed, for any $\left(x_{F}\right)_{F \in \mathcal{E}_{M / L}} \in X_{X}\left(X_{L / M}(K)\right)$, we write $x_{F}=\left(x_{F, E}\right)_{E \in \mathcal{E}_{F / K}}$. We claim that $x_{F, E}=x_{F^{\prime}, E}$ when $F \subset F^{\prime}$. To conclude, it suffices to consider a special sequence $E_{n} \in \mathcal{E}_{F / K}$ such that $F=\cup_{n \geq 1} E_{n}$ (because if $E \subset E_{n}$, then $\left.x_{F, E}=N_{E_{n} / E}\left(x_{F, E_{n}}\right)=N_{E_{n} / E}\left(x_{F^{\prime}, E_{n}}\right)=x_{F^{\prime}, E}\right)$. So we may choose E_{n}^{\prime} / E_{n} as above and then get

$$
\left(x_{F^{\prime}, E_{n}}\right)_{n \geq 1}=\left(N_{E_{n}^{\prime} / E_{n}}\left(x_{F^{\prime}, E_{n}^{\prime}}\right)\right)_{n \geq 1}=N_{X_{K}\left(F^{\prime}\right) / X_{K}(F)}\left(x_{F^{\prime}}\right)=x_{F}=\left(x_{F, E_{n}}\right)_{n \geq 1} .
$$

It remains to show that j also preserves additions; that is, for any $\underline{x} \in X_{K}(M), j(\underline{x}+1)=j(\underline{x})+1$. Let $\underline{y}=\underline{x}+1$ and then $y_{E}=\lim _{E^{\prime} \rightarrow M} N_{E^{\prime} / E}\left(x_{E^{\prime}}+1\right)$ for any $E \in \mathcal{E}_{M / K}$. Therefore,

$$
y_{F}=\left(\lim _{E^{\prime} \rightarrow M} N_{E^{\prime} / E}\left(x_{E}+1\right)\right)_{E \in \mathcal{E}_{F / K}}
$$

On the other hand, let $\underline{z}=j(\underline{x})+1$, then for any $F \in \mathcal{E}_{M / L}$, we have

$$
z_{F}=\lim _{F^{\prime} \rightarrow M} N_{X_{K}\left(F^{\prime}\right) / X_{K}(F)}\left(x_{F^{\prime}}+1\right)
$$

So we have to show that $y_{F}=z_{F}$.
We claim that $\lim _{F \rightarrow M} \nu_{X_{K}(F)}\left(y_{F}-1-x_{F}\right)=+\infty$. Granting this, for any F^{\prime} / F, we have

$$
\begin{aligned}
\nu_{X_{K}(F)}\left(N_{X_{K}\left(F^{\prime}\right) / X_{K}(F)}\left(1+x_{F^{\prime}}\right)-y_{F}\right) & =\nu_{X_{K}(F)}\left(N_{X_{K}\left(F^{\prime}\right) / X_{K}(F)}\left(1+x_{F^{\prime}}\right)-N_{X_{K}\left(F^{\prime}\right) / X_{K}(F)}\left(y_{F^{\prime}}\right)\right) \\
& \geq \phi_{\left.X_{K}\left(F^{\prime}\right) / X_{K}(F)\right)}\left(\nu_{X_{K}\left(F^{\prime}\right)}\left(x_{F^{\prime}}+1-y_{F^{\prime}}\right)\right) \quad(\because \text { Proposition 2.13) } \\
& \geq \phi_{\left.X_{K}(M) / X_{K}(F)\right)}\left(\nu_{X_{K}\left(F^{\prime}\right)}\left(x_{F^{\prime}}+1-y_{F^{\prime}}\right)\right) .
\end{aligned}
$$

By letting $F^{\prime} \rightarrow M$, we get $z_{F}=y_{F}$ as desired.
It remains to confirm $\lim _{F \rightarrow M} \nu_{X_{K}(F)}\left(y_{F}-1-x_{F}\right)=+\infty$. In other words, for any $A>0$, we have to find an $F \in \mathcal{E}_{M / L}$ such that for any $F^{\prime} \in \mathcal{E}_{M / F}, \nu_{X_{K}\left(F^{\prime}\right)}\left(y_{F^{\prime}}-1-x_{F^{\prime}}\right) \geq A$. Let $E \in \mathcal{E}_{M / K}$ such that $\frac{p-1}{p} i(M / E) \geq A$ and define $F=E L$. For any $F^{\prime} \in \mathcal{E}_{M / F}$, as F^{\prime} / E is totally ramified, we have

$$
\begin{aligned}
\nu_{X_{K}\left(F^{\prime}\right)}\left(y_{F^{\prime}}-1-x_{F^{\prime}}\right) & =\nu_{E}\left(\left(y_{F^{\prime}}-1-x_{F^{\prime}}\right)_{E}\right) \\
& =\nu_{E}\left(\lim _{E^{\prime} \rightarrow F^{\prime}} N_{E^{\prime} / E}\left(y_{F^{\prime}, E^{\prime}}-1-x_{F^{\prime}, E^{\prime}}\right)\right) \\
& =\nu_{E^{\prime}}\left(y_{F^{\prime}, E^{\prime}}-1-x_{F^{\prime}, E^{\prime}}\right) \\
& =\nu_{E^{\prime}}\left(\lim _{E^{\prime \prime} \rightarrow F^{\prime}} N_{E^{\prime \prime} / E^{\prime}}\left(1+x_{F^{\prime}, E^{\prime \prime}}\right)-1-\lim _{E^{\prime \prime} \rightarrow F^{\prime}} N_{E^{\prime \prime} / E^{\prime}}\left(x_{F^{\prime}, E^{\prime \prime}}\right)\right) \\
& \geq \frac{p-1}{p} i\left(M / E^{\prime}\right) \quad(\because \text { Proposition } 2.7) \\
& \geq A
\end{aligned}
$$

The proof is complete.

4.2 Proof of Proposition 4.2

The rest of this section is devoted to proving that for any $\sigma \in$ Aut $_{K}(L)$, there exists an $E \in \mathcal{E}_{L / K}$ such that for any $F \in \mathcal{E}_{L / E}, i_{F}(\sigma)=i_{X}\left(X_{K}(\sigma)\right)$. The $\sigma=1$ case is trivial and hence we assume $\sigma \neq 1$. Moreover, if $i_{X}\left(X_{K}(\sigma)\right)=-1$, then σ acts on $k_{X_{K}(L)} \cong k_{L}$ non-trivially. In this case, we may choose $E=K_{1}$ (which implies that $k_{F}=k_{L}$ for any $\mathcal{E}_{L / E}$).

From now on, we assume $i_{X}\left(X_{K}(\sigma)\right) \geq 0$ and there exists an $E_{0} \in \mathcal{E}_{L / K_{1}}$ such that $0<i_{E_{0}}(\sigma)<$ $+\infty$.

Lemma 4.7. For any $E \in \mathcal{E}_{L / K}, i_{E}(\sigma) \leq \psi_{L / E_{0}}\left(i_{E_{0}}(\sigma)\right)$.
Proof. For any $E \in \mathcal{E}_{L / E_{0}}$, let $j(\sigma)=\sup _{\sigma^{\prime} \mapsto \sigma} i_{E}\left(\sigma^{\prime}\right)$. By Lemma 1.4 (2), we have $i_{E}(\sigma)=$ $\phi_{E / E_{0}}(j(\sigma))$; equivalently, $j(\sigma)=\psi_{E / E_{0}}\left(i_{E_{0}}(\sigma)\right)$. So we have $i_{E}(\sigma) \leq j(\sigma) \leq \psi_{L / E_{0}}\left(i_{E_{0}}(\sigma)\right)$ as desired.

Now, let $E \in \mathcal{E}_{L / E_{0}}$ such that $i(L / E)>\psi_{L / E_{0}}\left(i_{E_{0}}(\sigma)\right)$. Then L / E is totally widely ramified.
Lemma 4.8. For any $F \in \mathcal{E}_{L / E}, i_{F}(\sigma)=i_{E}(\sigma)$.
Proof. Let F^{\prime} / K be the Galois closure of F / K and $G=\operatorname{Hom}_{\sigma(E)}\left(\sigma(F), F^{\prime}\right)$. Then $\sharp G=[F: E]$. Since F / E is totally ramified, by Lemma 1.2 (1), we have

$$
i_{E}(\sigma)=\frac{1}{[F: E]} \sum_{\sigma^{\prime} \mapsto \sigma} i_{F}\left(\sigma^{\prime}\right)=\frac{1}{[F: E]} \sum_{\tau \in G} i_{F}(\tau \sigma)
$$

By Lemma $1.6(2), i_{\sigma(F)}(\tau) \geq i(\sigma(F) / \sigma(E))=i(F / E) \geq i(L / E)$. On the other hand, let π be a uniformizer of F, then we have

$$
\frac{\tau \sigma(\pi)}{\tau(\pi)}-1=\frac{\tau \sigma(\pi)}{\pi}\left(\frac{\sigma(\pi)}{\pi}-1+1\right)^{-1}-1=\frac{\tau \sigma(\pi)}{\pi}-1+\frac{\tau \sigma(\pi)}{\pi} \sum_{n \geq 1}\left(\frac{\sigma(\pi)}{\pi}-1\right)^{n}
$$

Since $\nu_{F}\left(\frac{\sigma(\pi)}{\pi}-1\right)=i_{F}(\sigma) \leq \psi_{L / E_{0}}\left(i_{E_{0}}(\sigma)\right)<i(L / E) \leq i_{\sigma(F)}(\tau)=\nu_{\sigma(F)}\left(\frac{\tau \sigma(\pi)}{\tau(\pi)}-1\right)$, we must have

$$
i_{F}(\tau \sigma)=\nu_{F}\left(\frac{\tau \sigma(\pi)}{\pi}-1\right)=\nu_{F}\left(\frac{\sigma(\pi)}{\pi}-1\right)=i_{F}(\sigma)
$$

which implies that $i_{E}(\sigma)=\frac{\sharp G}{[F: E]} i_{F}(\sigma)=i_{F}(\sigma)$.
Finally, we show that $i_{F}(\sigma)=i_{X}\left(X_{K}(\sigma)\right)$ for any $F \in \mathcal{E}_{L / E}$. By the above lemma, it suffices to find an $F \in \mathcal{E}_{L / E}$ such that $i_{F}(\sigma)=i_{X}\left(X_{K}(\sigma)\right)$. Let $K_{0} \subset K_{1} \subset \cdots$ be the elementary chain of L / K and then for any $n \gg 0$, we have (1) $E \subset K_{n}$ and (2) $r\left(K_{n}\right) \geq \frac{p-1}{p} i\left(K_{n} / K\right)>\psi_{L / E_{0}}\left(i_{E_{0}}(\sigma)\right)+1 \geq$ $i_{K_{n}}(\sigma)+1$. We remark that $\sigma\left(K_{n}\right)=K_{n}$ for any n (as $\sigma(L)=L$) by the uniqueness of K_{n} 's.

Lemma 4.9. For $n \gg 0, i_{K_{n}}(\sigma)=i_{X}\left(X_{K}(\sigma)\right)$.
Proof. Let $\underline{p} i=\left(\pi_{n}\right)_{n \gg 0}$ be a uniformizer of X with π_{n} a uniformizer of K_{n} for each $n \gg 0$. Then
$i_{X}\left(X_{K}(\sigma)\right)=\nu_{X}\left(X_{K}(\sigma)(\underline{\pi})-\underline{\pi}\right)-1=\nu_{K_{n}}\left((\sigma(\underline{\pi})-\underline{\pi})_{K_{n}}\right)-1=\nu_{K_{n}}\left(\lim _{m \rightarrow+\infty} N_{K_{m} / K_{n}}\left(\sigma\left(\pi_{m}\right)-\pi_{m}\right)\right)-1$.
By Proposition 2.7, we know that

$$
\nu_{K_{n}}\left(\lim _{m \rightarrow+\infty} N_{K_{m} / K_{n}}\left(\sigma\left(\pi_{m}\right)-\pi_{m}\right)-\left(\sigma\left(\pi_{n}\right)-\pi_{n}\right)\right) \geq r\left(K_{n}\right)
$$

As $\nu_{K_{n}}\left(\sigma\left(\pi_{n}\right)-\pi_{n}\right)=i_{K_{n}}(\sigma)+1<r\left(K_{n}\right)$, we must have

$$
\nu_{K_{n}}\left(\lim _{m \rightarrow+\infty} N_{K_{m} / K_{n}}\left(\sigma\left(\pi_{m}\right)-\pi_{m}\right)\right)=\nu_{K_{n}}\left(\sigma\left(\pi_{n}\right)-\pi_{n}\right)=i_{K_{n}}(\sigma)+1
$$

So we deduce that $i_{X}\left(X_{K}(\sigma)\right)=i_{K_{n}}(\sigma)$ as expected.
The proof of Proposition 4.2 is complete.

5 Infinite SAPF extensions are perfectoid

Using fancy language, the goal of this section is to show the following result:
Theorem 5.1. Each infinite SAPF extension L / K has \hat{L} as a perfectoid field in the sense of [Sch]] such that the complete radical closure $\widehat{X}_{K}(L)_{r}$ of $X_{K}(L)$ is canonically isomorphic to \hat{L}^{b}, the tilting of \hat{L} in the sense of $[S c h]$.

5.1 The tilting functor

In this part, let C be a complete valuation field with perfect residue field k_{C} of characteristic p.
 define $\nu(\underline{x})=\nu_{C}\left(x_{0}\right)$ and let $\mathcal{O}_{C^{b}}=\{\underline{x} \mid \nu(\underline{x}) \geq 0\}$. Then $\mathcal{O}_{C^{b}}=\lim _{\varliminf_{x \mapsto x^{p}}} \mathcal{O}_{C}$.

For any $0 \neq a=\left(a_{n}\right)_{n \geq 0} \in A_{C}$, let $m \geq 0$ such that $a_{m} \neq 0$ and $\tilde{a}_{m} \in \mathcal{O}_{C}$ be a lifting of a_{m}. Then $p^{m} \nu_{C}\left(\tilde{a}_{m}\right)$ only depends on \underline{a} and we denote this value by $\nu(\underline{a})$.

Clearly, there exists a morphism $\iota: \mathcal{O}_{C^{b}} \rightarrow A_{C}$ of monoids by sending $\left(x_{n}\right)_{n \geq 0}$ to $\left(x_{n} \bmod p\right)_{n \geq 0}$. Clearly, ८ preserves ν.

For any $x \in k_{C}$ with Teichimüller lifting $[x] \in \mathcal{O}_{C}$, the element $\left(\left[x^{\frac{1}{p^{n}}}\right]\right)_{n \geq 0}$ is well-defined in $\mathcal{O}_{C^{b}}$, which induces a morphism $f_{C}: k_{C} \rightarrow \mathcal{O}_{C^{b}}$ of monoids.

We first show that C^{b} is a field. The idea is similar to the proof of Proposition 2.3 .

Proposition 5.3. (1) For any $\underline{x}=\left(x_{n}\right)_{n \geq 0}, \underline{y}_{n \geq 0} \in \mathcal{O}_{C}^{b}$ and any $n \geq 0,\left\{\left(x_{n+m}+y_{n+m}\right)^{p^{m}}\right\}_{m \geq 0}$ converges to a unique element $z_{n} \in \mathcal{O}_{C}$. As a consequence, $\underline{z}=\left(z_{n}\right)_{n \geq 0}$ is a well-defined element in $\mathcal{O}_{C^{b}}$ and we denote it by $\underline{x}+\underline{y}:=\underline{z}$.
(2) For any $\underline{x}=\left(x_{n}\right)_{n \geq 0}, \underline{y}_{n \geq 0} \in C^{b}$ and any $n \geq 0,\left\{\left(x_{n+m}+y_{n+m}\right)^{p^{m}}\right\}_{m \geq 0}$ converges to a unique element $z_{n} \in C$. As a consequence, $\underline{z}=\left(z_{n}\right)_{n \geq 0}$ is a well-defined element in $\mathcal{O}_{C^{b}}$ and we denote it $b y \underline{x}+\underline{y}:=\underline{z}$.
(3) Under the addition defined in (2), (C, ν) is a valuation field with ring of integers $\mathcal{O}_{C^{b}}$.

Proof. Item (2) is a consequence of (1) by assuming $\nu(\underline{x}) \geq \nu(\underline{y})$ with $\underline{x} \neq 0$ and replacing $\underline{x}, \underline{y}$ by $\frac{\underline{x}}{\underline{y}}$ and 1. By definition of ν, it makes $\mathcal{O}_{C^{b}}$ a valuation ring. Then Item (3) follows as $C^{b} \backslash\{0\}$ is a group.

For (1): Since $x_{n+m}^{p^{m}}=x_{n}, y_{n+m}^{p^{m}}=y_{n}$ for any $n, m \geq 0$, we know that

$$
\left(x_{n+m+1}+y_{n+m+1}\right)^{p} \equiv x_{n+m+1}^{p}+y_{n+m+1}^{p}=x_{n+m}+y_{n+m} \quad \bmod p
$$

The following lemma is well-known:

Lemma 5.4. Let R be a ring, I be an ideal, $x, y \in R$ and $m \geq 1$. If $x \equiv y \bmod I$, then $x^{p^{m}} \equiv y^{p^{m}}$ $\bmod \left(p^{m} I, p^{m-1} I^{p}, \cdots, I^{p^{m}}\right)$. In particular, when $I=(p), x^{p^{m}} \equiv y^{p^{m}} \bmod p^{m+1}$.

In particular, we have $\left(x_{n+m+1}+y_{n+m+1}\right)^{p^{m+1}} \equiv\left(x_{n+m}+y_{n+m}^{p^{m}}\right) \bmod p^{m+1}$. This implies (1).
Theorem 5.5. The field C^{b} is a complete valuation field with respect to ν such that $\iota: \mathcal{O}_{C^{b}} \rightarrow A_{C}$ is an isomorphism of valuation rings and that $f_{C}: k_{C} \rightarrow \mathcal{O}_{C^{b}}$ is a ring homomorphism identifying k_{C} with $k_{C^{b}}$. In particular, C^{b} is perfect of characteristic p.

Proof. Clearly, $\left(A_{C}, \nu\right)$ is a complete valuation ring of characteristic p with residue field $\lim _{x \mapsto x^{p}} k_{C} \cong$ k_{C}. It is enough to show ι is an isomorphism. We may proceeding as the proof of Lemma 2.16 .

We first show that ι preserves additions. Let $\underline{x}, \underline{y} \in \mathcal{O}_{C^{b}}$ with $\underline{z}=\underline{x}+\underline{y}$. Then we have

$$
z_{n}=\lim _{m \rightarrow+\infty}\left(x_{n+m}+y_{n+m}\right)^{p^{m}}
$$

Taking reductions modulo p, we have

$$
\bar{z}_{n}=\lim _{m \rightarrow+\infty}\left(\bar{x}_{n+m}+\bar{y}_{n+m}\right)^{p^{m}}=\bar{x}_{n+m}^{p^{m}}+\bar{y}_{n+m}^{p^{m}}=\bar{x}_{n}+\bar{y}_{n}
$$

which is exactly what we want.
Since ι preserves ν, it is an injection. We need to show it is also a surjection. Let $\underline{a}=\left(a_{n}\right)_{n \geq 0} \in A_{C}$ and let \tilde{a}_{n} be a lifting of a_{n} in \mathcal{O}_{C} for each n. The same proof for Proposition 5.3 (1) shows that for any $n \geq 0,\left\{\tilde{a}_{n+m}^{p^{m}}\right\}_{m \geq 0}$ converges to a unique element $x_{n} \in \mathcal{O}_{C}$. It is easy to see that $\left(x_{n}\right)_{n \geq 0}$ defines an element \underline{x} in $\mathcal{O}_{C^{b}}$ such that $\iota(\underline{x})=\underline{a}$.

Since $\mathrm{F}\left(\left(x_{n+1}\right)_{n \geq 1}\right)=\left(x_{n+1}^{p}\right)_{n \geq 1}=\left(x_{n}\right)_{n \geq 1}$, we see that the absolute Frobenius map F is an automorphism of C^{b}.

Remark 5.1. From the proof, it is easy to see that for any non-maximal closed ideal $I \in \mathcal{O}_{C}$ containing p, we always have $\mathcal{O}_{C^{b}}=\lim _{\leftarrow \rightarrow x^{p}} \mathcal{O}_{C} / I$.

Definition 5.6. We call the field C^{b} the tilting of C. In Win, C^{b} is denoted by $R(C)$.
Construction 5.7. For any $\underline{x}=\left(x_{n}\right)_{n \geq 0} \in \mathcal{O}_{C}^{b}$, we define $\underline{x}^{\sharp}=x_{0} \in \mathcal{O}_{C}$. Then there exists a ring homomorphism

$$
\theta: \mathrm{W}\left(\mathcal{O}_{C^{b}}\right) \rightarrow \mathcal{O}_{C}
$$

sending each $\sum_{n \geq 0} p^{n}\left[\underline{x}_{n}\right]$ to $\sum_{n \geq 0} p^{n} \underline{x}_{n}^{\sharp}$. By the universal property of Witt vectors, this map is induced by the natural projection

$$
\mathcal{O}_{C^{b}}=\lim _{x \mapsto x^{p}} \mathcal{O}_{C} / p \rightarrow \mathcal{O}_{C} / p
$$

We say C is perfectoid, if θ is surjective with kernel $\operatorname{Ker}(\theta)$ principle generated by an element of the form $\xi=\left[\underline{x}_{0}\right]+p\left[\underline{x}_{1}\right]+\cdots$ such that $\nu\left(\underline{x}_{0}\right)>0$ and $\nu\left(\underline{x}_{1}\right)=0$. We say such an element ξ is distinguished.

5.2 The tiltings of infinite SAPF extensions

From now on, we always assume L / K is an infinite SAPF extension and $X=X_{K}(L)$. For any $n \geq 0$, let $\mathcal{E}_{n}=\left\{E \in \mathcal{E}_{L / K_{1}}\left|p^{n}\right| q_{E}:=\left[E: K_{1}\right]\right\}$. Then \mathcal{E}_{n} is cofinal in $\mathcal{E}_{L / K}$.

Proposition 5.8. For any $\underline{x}=\left(x_{E}\right) \in X$ and any $n \geq 1$, $\left\{x_{E}^{p^{-n} q_{E}}\right\}_{E \in \mathcal{E}_{n}}$ converges to a unique element $x_{n} \in \hat{L}$ such that $\left(x_{n}\right)_{n \geq 0} \in \hat{L}^{b}$. Moreover the map $\underline{x} \rightarrow\left(x_{n}\right)_{n \geq 0}$ induces a continuous homomorphism $\Lambda_{L / K}: X_{K}(L) \rightarrow \hat{L}^{b}$.

Remark 5.2. It is not hard to check that $\Lambda_{L / K}$ defined above preserves the valuations.
We need the following lemma:
Lemma 5.9. Let E / K be a totally ramified separable extension of degree p^{r}. Then for any $x \in E$,

$$
\nu_{K}\left(\frac{N_{E / K}(x)}{x^{p^{r}}}-1\right) \geq c(E / K) .
$$

Proof. Let π be a uniformizer of K. Replacing x by $\pi^{n} x$ for $n \gg 0$, we may assume $x \in \mathcal{O}_{E}$.
Let $K=K_{1} \subset K_{2} \subset \cdots \subset K_{r}=E$ be the elementary chain of E / K. We will prove the lemma by induction on r. Let $i_{n}=i\left(K_{n+1} K_{n}\right)$ and then $c\left(E / K_{n}\right)=\inf _{m \geq n} \frac{i_{m}}{\left[K_{m+1}: K_{n}\right]}$.

When $r=2$, we know E / K is itself element and are reduced to show that for any $x \in \mathcal{O}_{E}$, $\nu_{K}\left(\frac{N_{E / K}(x)}{x^{p^{r}}}-1\right) \geq \frac{i(E / K)}{p^{r}}$. Since

$$
\frac{N_{E / K}(x)}{x^{p^{r}}}=\prod_{\sigma \in \operatorname{Hom}_{K}(E, \bar{K})}\left(1+\frac{\sigma(x)}{x}-1\right)
$$

it is enough to show $\nu_{E}\left(\frac{\sigma(x)}{x}-1\right) \geq i(E / K)$, as $\nu_{E}=[E: K] \nu_{K}$. Write $x=u \pi_{E}^{r}$ with $r \geq 0$ and $u \in \mathcal{O}_{E}^{\times}$and then

$$
\left.\frac{\sigma(x)}{x}-1=\frac{\left(\sigma\left(\pi_{E}^{r}\right)\right.}{\pi_{E}^{r}}-1\right) \frac{\sigma(u)}{u}+\frac{\sigma(u)}{u}-1 .
$$

By the definition of i_{E}, we see that $\nu_{E}\left(\frac{\sigma(x)}{x}-1\right) \geq i_{E}(\sigma)$. Then the result follows as $i_{E}(\sigma) \geq$ $\psi_{E / K}(i(E / K)) \geq i(E / K)$, by Lemma 1.8 .

For $r \geq 3$ and any $x \in \mathcal{O}_{E}$, by inductive hypothesis, we have

$$
\nu_{K_{2}}\left(\frac{N_{E / K_{2}}(x)}{x^{\left[E: K_{2}\right]}}-1\right) \geq \inf _{n \geq 2} \frac{i_{n}}{\left[K_{n+1}: K_{2}\right]}=c\left(E / K_{2}\right),
$$

which implies that

$$
\nu_{K}\left(\frac{N_{E / K_{2}}(x)}{x^{\left[E: K_{2}\right]}}-1\right) \geq\left[K_{2}: K\right] c\left(E / K_{2}\right) \geq c(E / K)
$$

On the other hand, we have already shown that

$$
\nu_{K}\left(\frac{N_{E / K}(x)}{N_{E / K_{2}}(x)^{\left[K_{2}: K\right]}}-1\right) \geq c\left(K_{2} / K\right) \geq c(E / K) .
$$

Then the lemma follows from the above two inequalities as desired.

Corollary 5.10. For any $\underline{x}=\left(x_{E}\right)_{E \in \mathcal{E}_{L / K}} \in X_{K}(L)$ and any $n \geq 0,\left(x_{E}^{p^{-n} q_{E}}\right)_{E \in \mathcal{E}_{n}}$ converges.
Proof. We only consider the $n=0$ case while the general case can be handled similarly. We may assume $K=K_{1}$ from now on to simplify the notations. So we have to show for any $C>0$, there exists an $E \in \mathcal{E}_{0}=\mathcal{E}_{L / K}$ such that for any $E^{\prime} \subset E^{\prime \prime}$ in $\mathcal{E}_{L / E}, \nu_{K}\left(x_{E^{\prime}}^{q_{E^{\prime}}}-x_{E^{\prime \prime}}^{q_{E^{\prime \prime}}}\right) \geq C$.

Let $K=K_{1} \subset K_{2} \subset \cdots \subset L$ be the elementary chain of L / K. We choose an $N \gg 0$ satisfying the following condition:
(1) If $\operatorname{char}(K)=p$, then $\left[K_{N}: K\right] \geq \frac{A-\nu_{K}\left(x_{K}\right)}{c(L / K)}$.
(2) If $\operatorname{char}(K)=0$, choose an N_{0} such that $\left(N_{0}+\frac{1}{p-1}\right) \nu_{K}(p) \geq A-\nu_{K}\left(x_{K}\right)$, then $\left[K_{N}: K\right] \geq$ $p^{N_{0}} \max \left(1, \frac{\nu_{K}(p)}{(p-1) c(L / K)}\right)$.

Now we are going to show that $E=K_{N}$ satisfies the desired condition.
For any $E^{\prime} \subset E^{\prime \prime}$ in $\mathcal{E}_{L / E}$, by Lemma 5.9, we have

$$
\nu_{K}\left(\frac{x_{E^{\prime}}}{x_{E_{E^{\prime \prime}}^{\prime \prime}} / q_{E^{\prime}}}-1\right)=q_{E^{\prime}}^{-1} \nu_{E^{\prime}}\left(\frac{N_{E^{\prime \prime} / E^{\prime}}\left(x_{E^{\prime \prime}}\right)}{x_{E^{\prime \prime \prime}}^{E^{\prime \prime}: E^{\prime}}}-1\right) \geq q_{E^{\prime}}^{-1} c\left(E^{\prime \prime} / E^{\prime}\right) \geq q_{E^{\prime}}^{-1} c\left(L / K_{N}\right) .
$$

Here, the last inequality follows from $c\left(E^{\prime \prime} / E^{\prime}\right) \geq c\left(E^{\prime \prime} / K_{N}\right) \geq c\left(L / K_{N}\right)$.
Recall that $c(L / K)=\inf _{n \geq 1} \frac{i\left(K_{n+1} / K\right)}{\left[K_{n+1}: K\right]}$ and $c\left(L / K_{N}\right)=\inf _{n \geq N} \frac{i\left(K_{n+1} / K_{N}\right)}{\left[K_{n+1}: K_{N}\right]}$. Then we have

$$
\nu_{K}\left(\frac{x_{E^{\prime}}}{x_{E_{E^{\prime \prime \prime}}}^{q_{E^{\prime}}}}-1\right) \geq q_{E^{\prime}}^{-1}\left[K_{N}: K\right] c(L / K) .
$$

Case 1: Assume $\operatorname{char}(K)=p$. By condition (1), we have

$$
\begin{aligned}
\nu_{K}\left(x_{E^{\prime \prime}}^{q_{E^{\prime}}}-x_{E^{\prime \prime}}^{q_{E^{\prime \prime}}}\right) & =q_{E^{\prime}}\left(\nu_{K}\left(\frac{x_{E^{\prime}}}{x_{E^{\prime \prime}}^{q^{\prime \prime}} q_{E^{\prime}}}-1\right)+\nu_{K}\left(x_{E^{\prime \prime}}^{q_{E^{\prime \prime}} / q_{E^{\prime}}}\right)\right) \\
& \geq\left[K_{N}: K\right] c(L / K)+q_{E^{\prime \prime}} \nu_{K}\left(x_{E^{\prime \prime}}\right) \\
& \geq A-\nu_{K}\left(x_{K}\right)+\nu_{E^{\prime \prime}}\left(x_{E^{\prime \prime}}\right)=A
\end{aligned}
$$

Case 2: Assume $\operatorname{char}(K)=0$. Since $\left[K_{N}: K\right] \geq p^{N_{0}} \frac{\nu_{K}(p)}{(p-1) c(L / K)}$, we have

$$
\nu_{K}\left(\frac{x_{E^{\prime}}}{x_{E^{\prime \prime}}^{q_{E^{\prime \prime}} / q_{E^{\prime}}}}-1\right) \geq q_{E^{\prime}}^{-1} p^{N_{0}} \frac{\nu_{K}(p)}{p-1} .
$$

Recall the following fact:
Lemma 5.11 ($\left[\right.$ Se2, Prop. 6, $\left.n^{\circ} 1.7\right]$). Let K be a complete discrete valued p-adic field with $e_{1}=$ $\frac{\nu_{K}(p)}{p-1}$. Put $\lambda(n)=\inf (p n, n+e)=\left\{\begin{aligned} p n, & n \leq e_{1} \\ n+e, & n \geq e_{1}\end{aligned}\right.$. Then $u: U_{K} \rightarrow U_{K}$ carrying each x to x^{p} sends U_{K}^{n} and U_{K}^{n+1} to $U_{K}^{\lambda(n)}$ and $U_{K}^{\lambda(n)+1}$ and hence induces a homomorphism $u_{n}: U_{K}^{n} / U_{K}^{n+1} \rightarrow$ $U_{K}^{\lambda(n)} / U_{K}^{\lambda(n)+1}$. Moreover, u_{n} is surjective with $\operatorname{Ker}\left(u_{n}\right)$ vanishing if $n=e_{1}$ and cyclic of degree p if $n \neq e_{1}$.

Since $q_{E^{\prime}} \geq\left[K_{N}: K\right] \geq p^{N_{0}}$ (by condition (2)), by above fact, we have

$$
\nu_{K}\left(\frac{x_{E^{\prime}}^{q_{E^{\prime}} / p^{N_{0}}}}{x_{E^{\prime \prime}}^{q_{E^{\prime \prime}} / p^{N_{0}}}}-1\right) \geq p \nu_{K}\left(\frac{x_{E^{\prime}}^{q_{E^{\prime}} / p^{N_{0}+1}}}{x_{E^{\prime \prime}}^{q_{E^{\prime \prime}} / p^{N_{0}+1}}}-1\right) \geq \cdots \geq \frac{q_{E^{\prime}}}{p^{N_{0}}} \nu_{K}\left(\frac{x_{E^{\prime}}}{x_{E^{\prime \prime}}^{q_{E^{\prime \prime}} / q_{E^{\prime}}}}-1\right) \geq \frac{\nu_{K}(p)}{p-1}
$$

By above fact again, we conclude that

$$
\begin{aligned}
\nu_{K}\left(x_{E^{\prime}}^{q_{E^{\prime}}}-x_{E^{\prime \prime}}^{q_{E^{\prime \prime}}}\right) & =\nu_{K}\left(\frac{x_{E^{\prime}}^{q_{E^{\prime}}}}{x_{E^{\prime \prime \prime}}}-1\right)+q_{E^{\prime \prime}} \nu_{K}\left(x_{E^{\prime \prime}}\right) \\
& \geq \frac{\nu_{K}(p)}{p-1}+N_{0} \nu_{K}(p)+\nu_{E^{\prime \prime}}\left(x_{E^{\prime \prime}}\right) \\
& \geq A-\nu_{K}\left(x_{K}\right)+\nu_{K}\left(N_{E^{\prime \prime} / K}\left(x_{E^{\prime \prime}}\right)\right)=A
\end{aligned}
$$

The proof is complete by combining both two cases together.
Proof of Propositior5.8: For any $\underline{x}=\left(x_{E}\right)_{E \in \mathcal{E}_{L / K}} \in X_{K}(L)$, let $x_{n}=\lim _{E \in \mathcal{E}_{n}} x_{E}^{p^{-n} q_{E}}$. Since $\mathcal{E}_{n+1} \subset$ \mathcal{E}_{n}, we have $x_{n+1}^{p}=x_{n}$ and hence get an element $\Lambda_{L / K}(\underline{x}) \in \hat{L}^{b}$. By construction, $\Lambda_{L / K}$ preserves multiplication and is injective. (If $\Lambda_{L / K}(\underline{x})=0$, then $x_{0}=0$, which implies that $x_{E}^{q_{E}}=0=x_{E}$ for sufficiently large E and hence $\underline{x}=0$.)

It remains to prove that $\Lambda_{L / K}$ is additive. In other words, we need to show for any $\underline{x} \in \mathcal{O}_{X_{K}(L)}$, $\Lambda_{L / K}(\underline{x}+1)=\Lambda_{L / K}(\underline{x})+1$. Put $\underline{y}=\underline{x}+1$ and then we have to show that $y_{n}=\lim _{m \rightarrow+\infty}\left(1+x_{n+m}\right)^{p^{m}}$.

For any $n, m \geq 0$, since $x_{n+m}=\lim _{E \in \mathcal{E}_{n}} x_{E}^{q_{E} p^{-n}}$, there exists some $r \geq n+m+1$ such that
(1) $\quad \nu_{K_{1}}\left(x_{n+m}-x_{K_{r}}^{q_{K_{r}} p^{-n-m}}\right) \geq \frac{p-1}{p} c\left(L / K_{1}\right)$.

By enlarging r if necessary, we may also requiring that
(2) $\quad \nu_{K_{1}}\left(y_{n+m}-y_{K_{r}}^{q_{K_{r}}} p^{-n-m}\right) \geq \frac{p-1}{p} c\left(L / K_{1}\right)$.

By noting that $\mathcal{O}_{X_{K}(L)}=\lim _{E \in \mathcal{E}_{L / K_{1}}} \mathcal{O}_{E} / \mathfrak{P}_{E}^{r(E)}$, we have

$$
\nu_{K_{r}}\left(y_{K_{r}}-1-x_{K_{r}}\right) \geq r\left(K_{r}\right)=\frac{p-1}{p} i\left(L / K_{r}\right)=\frac{p-1}{p} i\left(K_{r+1} / K_{r}\right)
$$

which implies that

$$
\begin{equation*}
\nu_{K_{1}}\left(y_{K_{r}}-1-x_{K_{r}}\right) \geq r\left(K_{r}\right) \geq \frac{p-1}{p} i\left(L / K_{r}\right)=\frac{p-1}{p} \frac{i\left(K_{r+1} / K_{r}\right)}{\left[K_{r}: K_{1}\right]} \geq \frac{p-1}{p} c\left(L / K_{1}\right) . \tag{3}
\end{equation*}
$$

Let $e=\nu_{K_{1}}(p)$ and $f=\frac{p-1}{p} c\left(L / K_{1}\right)$. By (1) and Lemma 5.4, we see that

$$
\begin{equation*}
\nu_{K_{1}}\left(\left(1+x_{n+m}\right)^{p^{m}}-\left(1+x_{K_{r}}^{q_{K_{r}} p^{-n-m}}\right)^{p^{m}}\right) \geq \inf \left(m e+f,(m-1) e+p f, \cdots, p^{m} f\right) \tag{4}
\end{equation*}
$$

By (2) and Lemma 5.4, we see that
(5) $\quad \nu_{K_{1}}\left(y_{n}-y_{K_{r}}^{q_{K_{r}} p^{-n}}\right) \geq \inf \left(m e+f,(m-1) e+p f, \cdots, p^{m} f\right)$.

By (3) and Lemma 5.4 (and $r \geq n+m+1$), we have

$$
\begin{equation*}
\nu_{K_{1}}\left(y_{K_{r}}^{q_{K_{r}} p^{-n}}-\left(1+x_{K_{r}}\right)^{q_{K_{r}} p^{-n}}\right) \geq \inf \left(m e+f,(m-1) e+p f, \cdots, p^{m} f\right) . \tag{6}
\end{equation*}
$$

Finally, as $1+x_{K_{r}}^{q_{K_{r}} p^{-n-m}} \equiv\left(1+x_{K_{r}}\right)^{q_{K_{r}}} p^{-n-m} \bmod p$, we have

$$
\begin{equation*}
\nu_{K_{1}}\left(\left(1+x_{K_{r}}^{q_{K_{r}} p^{-n-m}}\right)^{p^{m}}-\left(1+x_{K_{r}}\right)^{q_{K_{r}} p^{-n}}\right) \geq(m+1) e . \tag{7}
\end{equation*}
$$

Combining (4)-(7) together, we get

$$
\nu_{K_{1}}\left(y_{n}-\left(1+x_{n+m}\right)^{p^{m}}\right) \geq \inf \left((m+1) e, m e+f,(m-1) e+p f, \cdots, p^{m} f\right) .
$$

As $e, f>0$, we can conclude by letting $m \rightarrow+\infty$.

5.3 Proop of Theorem 5.1

We now give a proof of our main theorem in this section. Since \hat{L}^{b} is complete and perfect, the natural morphism $\Lambda_{L / K}: X_{K}(L) \rightarrow \hat{L}^{b}$ extends canonically to an embedding $\hat{X}_{r}:=\hat{X}_{K}(L)_{r} \rightarrow \hat{L}^{b}$. The key ingredient is the following proposition:

Proposition 5.12. The composition $\mathcal{O}_{\hat{X}_{r}} \rightarrow \mathcal{O}_{\hat{L}^{b}} \rightarrow \mathcal{O}_{\hat{L}} / p \mathcal{O}_{\hat{L}}=\mathcal{O}_{L} / p \mathcal{O}_{L}$ is a surjection.
We first exhibit how to conclude our main theorem from the above proposition.
Proof of Theorem 5.1: We first show that $\mathcal{O}_{\hat{X}_{r}} \rightarrow \mathcal{O}_{\hat{L}^{b}}$ is an isomorphism. It suffices to show this morphism is surjective. By Proposition 5.12, we have a surjection $\mathcal{O}_{\hat{X}_{r}} \rightarrow \mathcal{O}_{\hat{L}} / p \mathcal{O}_{\hat{L}}$, which gives rise to the desired surjection

$$
\mathcal{O}_{\hat{X}_{r}} \cong \lim _{x \rightarrow x^{p}} \mathcal{O}_{\hat{X}_{r}} \rightarrow \lim _{x \rightarrow x^{p}} \mathcal{O}_{\hat{L}} / p \mathcal{O}_{\hat{L}}=\mathcal{O}_{\hat{L}^{b}}
$$

Now we show \hat{L} is perfectoid in the sense of Construction 5.7.
Case 1: Assume $\operatorname{char}(K)=p$. In this case, $\mathcal{O}_{\hat{L}^{b}}=\varliminf_{x \rightarrow x^{p}} \mathcal{O}_{\hat{L}} \rightarrow \mathcal{O}_{\hat{L}}$ is a surjection. Therefore $\mathcal{O}_{\hat{L}}$ is itself perfect, which forces that $\mathcal{O}_{\hat{L}^{b}}=\mathcal{O}_{\hat{L}}$. So the natural map $\mathrm{W}\left(\mathcal{O}_{\hat{L}^{b}}\right) \rightarrow \mathcal{O}_{\hat{L}}$ is surjection with kernel principly generated by p. So \hat{L} is perfectoid.

Case 2: Assume $\operatorname{char}(K)=p$. Since $\theta: W\left(\mathcal{O}_{\hat{L}^{b}}\right) \rightarrow \mathcal{O}_{\hat{L}}$ is induced by the surjection $\mathcal{O}_{\hat{L}^{b}} \rightarrow$ $\mathcal{O}_{\hat{L}} / p \mathcal{O}_{\hat{L}}$, we know θ is itself a surjection. It remains to show $\operatorname{Ker}(\theta)$ is generated by a distinguished element.

Recall for any $\underline{x}=\left(x_{E}\right)_{E \in \mathcal{E}_{L / K_{1}}} \in X_{K}(L), \nu_{X}(\underline{x})=\nu_{K_{1}}\left(x_{K_{1}}\right)$. So we have $\nu_{X}\left(X_{K}(L)^{\times}\right)=\mathbb{Z}=$ $\nu_{K_{1}}\left(K_{1}^{\times}\right)$. Therefore, $\nu_{X}\left(\hat{X}_{r}^{\times}\right)=\mathbb{Z}\left[\frac{1}{p}\right]=\nu_{K_{1}}\left(L^{\times}\right)$. In particular, there exists an $x_{0} \in \hat{L}^{b}$ such that $\nu_{X}\left(x_{0}\right)=\nu_{K_{1}}(p)$; that is, $\theta\left(\left[x_{0}\right]\right)=-p u$ for some $u \in \mathcal{O}_{\hat{L}}$. By the surjection of θ, there exists an element $\left[x_{1}\right]+p\left[x_{2}\right]+\cdots \in \mathrm{W}\left(\mathcal{O}_{\hat{L}^{b}}\right)$ lifting u along θ. Therefore, $\xi=\left[x_{0}\right]+p\left[x_{1}\right]+\cdots$ is contained in $\operatorname{Ker}(\theta)$ which is distinguished (because $\nu_{K_{1}}\left(x_{1}^{\sharp}\right)=0$ as u is a unit). We are reduced to showing
that $\operatorname{Ker}(\theta)=(\xi)$. Indeed, for any $y=\left[y_{0}\right]+p\left[y_{1}\right]+\cdots \in \operatorname{Ker}(\theta)$, we must have $\nu_{X}\left(y_{0}\right) \geq \nu_{K_{1}}(p)$. Therefore, there exists an element $z_{0} \in \mathrm{~W}\left(\mathcal{O}_{\hat{L}^{b}}\right)$ such that $y=z_{0} \xi+p y_{1}$ for some $y_{1} \in \operatorname{Ker}(\theta)$. By iteration, there are z_{n} 's such that $y \equiv z_{0} \xi+p z_{1} \xi+\cdots+p^{n} z_{n} \xi \bmod p^{n+1}$. Since $\mathrm{W}\left(\mathcal{O}_{\hat{L}^{b}}\right)$ is p-complete, we see that $z=z_{0}+p z_{1}+\cdots$ is well-defined such that $y=z \xi$.

At last, we show Proposition 5.12
Proof of Proposition 5.12: Let $K \subset K_{0} \subset K_{1} \subset \cdots$ be the elementary chain of L / K. Let $c=$ $\inf \left(\nu_{K_{1}}(p), \frac{p-1}{p} c\left(L / K_{1}\right)\right)$ and $I=\left\{x \in \mathcal{O}_{L} \mid \nu_{K_{1}}(x) \geq c\right\}$. Then we know $\mathcal{O}_{\hat{L}^{b}}=\lim _{\gtrless_{x \mapsto x^{p}}} \mathcal{O}_{\hat{L}} / I$. We first claim $\mathcal{O}_{\hat{X}_{r}} \rightarrow \mathcal{O}_{\hat{L}^{b}} \rightarrow \mathcal{O}_{\hat{L}} / I=\mathcal{O}_{L} / I$ is a surjection. For this, let us fix an $x \in \mathcal{O}_{L}$.

Choose $N \gg 1$ such that $x \in \mathcal{O}_{K_{N}}$. Then there exists an $\underline{y}=\left(y_{E}\right)_{E \in \mathcal{E}_{L / K_{1}}} \in \mathcal{O}_{X_{K}(L)}=A_{K}(L)$ such that

$$
\nu_{K_{N}}\left(x-y_{K_{N}}\right) \geq r\left(K_{N}\right)=\frac{p-1}{p} i\left(K_{N+1} / K_{N}\right) .
$$

In particular, we have

$$
\nu_{K_{1}}\left(x-y_{K_{N}}\right)=\geq \frac{p-1}{p} \frac{i\left(K_{N+1} / K_{N}\right)}{\left[K_{N}: K_{1}\right]} \geq \frac{p-1}{p} c\left(L / K_{1}\right) \geq c,
$$

which implies that $x \equiv y_{K_{N}} \bmod I$.
We are going to show that $\underline{y}^{1 /\left[K_{N}: K_{1}\right]} \in X_{K}(L)_{r}$ as an element in $\mathcal{O}_{\hat{L}^{b}}$ (via $\Lambda_{L / K}$) has reduction x modulo I. Write $\Lambda_{L / K}(\underline{y})=\left(y_{n}\right)_{n \geq 0}$. If $\left[K_{N}: K_{1}\right]=p^{r}$, we see that $\Lambda\left(\underline{y}^{1 /\left[K_{N}: K_{1}\right]}\right)=\left(y_{n+r}\right)_{n \geq 0}$. So we need to show that y_{r} is a lifting of $y_{K_{N}}$ along $\mathcal{O}_{\hat{L}^{b}} \rightarrow \mathcal{O}_{L} / I$.

For any $n \geq N$, by Lemma 5.9, we have

$$
\nu_{K_{1}}\left(\frac{y_{K_{n+1}}^{\left[K_{n+1}: K_{n}\right]}}{y_{K_{n}}}-1\right)=\left[K_{n}: K_{1}\right]^{-1} \nu_{K_{n}}\left(\frac{y_{K_{n+1}}^{\left[K_{n+1}: K_{n}\right]}}{y_{K_{n}}}-1\right) \geq\left[K_{n}: K_{1}\right]^{-1} c\left(K_{n+1} / K_{n}\right)=\frac{i\left(K_{n+1} / K_{n}\right)}{\left[K_{n+1}: K_{1}\right]} \geq c\left(L / K_{1}\right) .
$$

By definition of $\Lambda_{L / K}$, we see that

$$
y_{r}=\lim _{n \rightarrow+\infty} y_{K_{n}}^{\left[K_{n}: K_{1}\right] p^{-r}}=\lim _{n \rightarrow+\infty} y_{K_{n}}^{\left[K_{n}: K_{N}\right]} .
$$

In particular, for $n \gg 0$,

$$
\begin{aligned}
y_{r} \equiv y_{K_{n}}^{\left[K_{n}: K_{N}\right]} & =\left(\frac{y_{K_{n}}^{\left[K_{n}: K_{n-1}\right]}}{y_{K_{n-1}}}\right)^{\left[K_{n-1}: K_{N}\right]} y_{K_{n-1}}^{\left[K_{n-1}: K_{N}\right]} \\
& =\left(\frac{y_{K_{n}}^{\left[K_{n}: K_{n-1}\right]}}{y_{K_{n-1}}}\right)^{\left[K_{n-1}: K_{N}\right]} \cdots \frac{y_{K_{N+1}}^{\left[K_{N+1}: K_{N}\right]}}{y_{K_{N}}} \cdot y_{K_{N}} \\
& \equiv y_{K_{N}} \bmod I .
\end{aligned}
$$

This implies the surjectivity of the composition $\iota: \mathcal{O}_{\hat{X}_{r}} \rightarrow \mathcal{O}_{\hat{L}^{b}} \rightarrow \mathcal{O}_{L} / I$.
Finally, we are reduced to showing ι upgrades to a surjection $\mathcal{O}_{\hat{X}_{r}} \rightarrow \mathcal{O}_{\hat{L}^{b}} \rightarrow \mathcal{O}_{L} / p$. Since $\nu_{X}\left(X_{r}^{\times}\right)=\mathbb{Z}\left[\frac{1}{p}\right]=\nu_{K_{1}}(\hat{L})$, by shrink c if necessary, we may assume there exists an $a \in X_{K}(L)_{r}$ such that $\nu_{X}(a)=\nu_{K_{1}}\left(\Lambda_{L / K}(a)^{\sharp}\right)=c$.

Fix an $x_{0} \in \mathcal{O}_{\hat{L}}$. By what we have proved, there exists a $y_{0} \in \mathcal{O}_{X_{K}(L)_{r}}$ such that $\iota\left(y_{0}\right)=x_{0}$ $\bmod I$. In other words, there exists an x_{1} such that $x_{0}=\Lambda_{L / K}\left(y_{0}\right)^{\sharp}+\Lambda_{L / K}(a)^{\sharp} x_{1}$. By iteration, we have $x_{0}=\sum_{m \geq 0} \Lambda_{L / K}\left(a^{m} y_{m}\right)^{\sharp}$. Modulo p, we get

$$
x_{0} \quad \bmod p=\sum_{m \geq 0} \Lambda_{L / K}\left(a^{m} y_{m}\right)^{\sharp} \quad \bmod p=\Lambda_{L / K}\left(\sum_{m \geq 0} a^{m} y_{m}\right)^{\sharp} \quad \bmod p .
$$

In other words, $\Lambda_{L / K}\left(\sum_{m \geq 0} a^{m} y_{m}\right)^{\sharp}$ lifts x_{0} along $\mathcal{O}_{\hat{X}_{r}} \rightarrow \mathcal{O}_{\hat{L}^{b}} \rightarrow \mathcal{O}_{\hat{L}} / p$. We are done.

References

[Se] J.-P. Serre Local fields, GTM67.
[Se2] J.-P. Serre Sur les corps locaux à corps résiduel algébriquement clos, Bull.Soc.Math.Fr., vol. 89, 1961,p. 105-154.
[Win] J.-P. Wintenberger Le corps des normes de certaines extensions infinies de corps locaux; applications, asens.
[Sch] P. Scholze Perfectoid spaces, ihes.

