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1 Introduction

One of the starting point in homotopy theory is the following result. Let
d > 0 be a natural number, Sd the d-dimensional sphere and let i ∈ Z be an
integer such that i + d > 0. Then1 :

πi+d(S
d) =

{
0 if i < 0
Z if i = 0

Recall [1] that for d large enough the group πi+d(S
d) only depends on

i ∈ Z. It is called the i-th stable homotopy group of the “sphere spectrum
S0” and is denoted by πi(S

0). The above result imply the following one on
stable homotopy groups of spheres :

πi(S
0) =

{
0 if i < 0
Z if n = 0

In this lectures, our aim is to give some overview of the basic definitions and
theorems in A1-homotopy theory [39, 25, 19] by addressing, among other
things, the analogue of the above theorem in the A1-homotopy theory of
smooth schemes over a fixed base field k.

The first question to answer is : what are the algebraic analogues of the
spheres ?

Clearly we have two different types of smooth k-varieties which are rea-
sonable “algebraic spheres”. The first one is the projective line P1, that is to
say the one point compactification of the affine line A1. One would like also
to consider its “smash-products” by itself P

1 ∧ · · ·∧P
1 as higher dimensional

spheres. The problem is that these smash-product are no longer smooth k-
varieties and have to be performed in a larger category than just the category
of smooth k-varieties. The other obvious smooth varieties which are alge-
braic spheres are the complement of 0 in the affine space of dimension n ≥ 0,
denoted by An − {0}. In a sense which is made precise in [25], these two
type of spheres, in fact, are related as follows : the “simplicial suspension”
of An − {0} is homotopy equivalent to P1 ∧ · · · ∧ P1.

1where for m > 0 we denote by πm(X) the m-th homotopy group of a pointed space X
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We should emphasize that our previous considerations mostly come from
our intuition of the “topology” of these algebraic varieties: given any com-
plex or real embedding of the base field the topological spaces we get are
indeed homotopy equivalent to spheres.

The second question to answer is what is the expected connectivity of
these algebraic spheres ?

To illustrate this serious problem, observe that from the intuition men-
tioned above we get rather confused: the complex point of P1 is a 2 di-
mensional sphere (the Riemann sphere) and is thus simply connected. But
through a real embedding P1 gives a circle, which is not simply connected!

Curiously2 the connectivity is given by the real topology as it is clear
from the following two statements which will be made precise later. One
“explanation” of that phenomenon has already been given: P1 which is a
curve is the suspension of A1 − {0} = Gm. Thus Gm must rather be a
0-dimensional object, like it is if one consider its real topology!

Theorem 1 Let k be a field and let n, i be integers. Then the group of “stable
A1-homotopy classes of maps over k”

[Si, (Gm)∧n]

is trivial for i < 0.

We shall also discuss several recent results concerning a precise description
of the groups

[S0, (Gm)∧n]

by introducing the Milnor-Witt K-theory of fields. In particular, these are
all non-trivial and in fact for n = 0 one has:

Theorem 2 Let k be a perfect field of characteristic �= 2. Then the group of
“stable A1-homotopy classes of maps over k”

[S0, S0]

is canonically isomorphic to the Grothendieck-Witt ring of quadratic forms
over k.

2contrary to the “motivic” intuition which rather fits with the complex topology
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Everywhere in this text, k is a perfect field, Sm(k) is the category of
separated smooth schemes of finite type over k, called smooth k-varieties in
the sequel. For simplicity, if no confusion can arise, we will just denote by V
this category of smooth k-varieties.

For any scheme X and any point x ∈ X, OX,x will denote the local ring
of X at x, mx its maximal ideal, and κ(x) its residue field.

Set will denote the category of sets.

Acknowledgments. It is a pleasure to thank very much Mike Hopkins
and Vladimir Voevodsky for several discussions on and around the subject
of these notes.

2 Recollection on simplicial homotopy theory

2.1 Presheaves and sheaves

Definition 2.1.1 Let {fα : Uα → X}α be a finite family of Étale morphisms
in Sm(k).

1) {fα : Uα → X}α is called a covering family in the étale topology if and
only if X is the union of the open subsets fα(Uα).

2) {fα : Uα → X}α is called a covering family in the Nisnevich topology
if and only if for any point x ∈ X there exists an α and a point y ∈ Uα which
maps to x and has the same residue field (i.e. κ(x) ∼= κ(y)).

3) {fα : Uα → X}α is called a covering family in the Zariski topology if
each of the fα is an open immersion and the Uα’s cover X.

Of course Zariski coverings are Nisnevich coverings, and Nisnevich cover-
ings are étale coverings. Nisnevich topology was introduced in [26].

Let us denote by Preshv(V) the category of presheaves of sets on V, that
is to say the category of functors

Vop → Set

In the sequel, τ will always denote one of the three symbols Zar, Nis, Ét.
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Definition 2.1.2 A presheaf of sets

F : (V)op → Set

is a sheaf in the τ -topology if for any covering family {fα : Uα → X}α in the
τ -topology, the obvious diagram of sets:

F (X) → ΠαF (Uα) →→ Πα,βF (Uα ×X Uβ)

defines the set F (X) as the equalizer of the two maps on the right.

We shall denote by Shv(Vτ ) the full subcategory of Preshv(V) consisting
of sheaves of sets in the τ -topology.

Lemma 2.1.3 [17] For any X ∈ V, the presheaf of sets:

Y 	→ HomV(Y, X)

is a sheaf in the Étale topology (and thus also in the Nisnevich and Zariski
topology).

Observe that we thus have the following obvious full embeddings:

V ⊂ Shv(Vét) ⊂ Shv(VNis) ⊂ Shv(VZar) ⊂ Preshv(V)

Recall from [25] the following

Definition 2.1.4 A distinguished square in V is a cartesian square of the
form :

W → V
↓ ↓ p

U
i→ X

such that p is an étale morphism, i is an open immersion and

p−1((X − U)réd) → (X − U)réd

is an isomorphism of schemes (where réd means we endow the closed subset
with the reduced induced structure).
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We observe that for such a square, the family {U i→ X, V
p→ X} is a

covering family in the Nisnevich topology. Observe also that if p is an open
immersion, the last condition exactly means that U and V cover X. This
squares will play for the Nisnevich topology the role played in the Zariski
topology by the squares of the form:

U ∩ V → V
↓ ↓
U → U ∪ V

for open subsets U and V in X. Here is the smallest example of genuine
distinguished square in the Nisnevich topology:

Example 2.1.5 Let L be a finite field extension of k and x ∈ L a generator
of L over k (recall that k is perfect so that there is always one). Denote by
x0 : Spec(L) → A1 the closed embedding corresponding to x and let U be
the open complement. The morphism A

1
L → A

1 is étale and the pull back of
x0 by this morphism is the finite étale L-scheme F := Spec(L ⊗k L) closely
embedded into A1

L. The diagonal section y0 : SpecL → F of F → SpecL
thus splits F as F ′�SpecL. Let Ω denote the open complement to the closed
subscheme F ′ ⊂ A1

L. Then one checks that the square:

Ω − y0 → Ω
↓ ↓
U → A1

is a distinguished square.

It is well-known that a presheaf of sets F is a sheaf in the Zariski topology
if for any X ∈ V and any pair of open subsets U and V covering X the map

F (X) → F (U) ×F (U∩V ) F (V )

is bijective. The following lemma makes precise that to some extent the
Nisnevich topology behaves very closely to the Zariski topology.

Lemma 2.1.6 [25] A presheaf of sets F is a sheaf in the Nisnevich topology
(on Sm(k)) if and only if for any distinguished square in V the map

F (X) → F (U) ×F (U×XV ) F (V )

is bijective.
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The following is well known:

Lemma 2.1.7 [3] For any τ , the inclusion Shv(Vτ ) ⊂ Preshv(V) admits as
left adjoint aτ : Preshv(V) → Shv(Vτ ) called the “associated sheaf” functor.

Definition 2.1.8 A τ -point in V is a morphism of schemes

x : Spec(K) → X

such that

1) K is a separably closed field in case τ = ét;

2) K is the residue field of the image (also denoted x) of the point of
SpecK in X in case τ is either Nis or Zar.

We are now in position to define the category of neighborhoods of a τ -
point.

Definition 2.1.9 Let x : SpecK → X be a τ -point ∈ V. The category Neibx
τ

of neighborhoods of x is

1) the category of pairs (f : U → X, y : Spec(K) → U) with f an étale
morphism with U irreducible and y a τ -point of U with the same field K,
which lifts x in case τ is ét or Nis.

2) the category of open subsets of X which contain x in case τ is Zar.

That category is left filtering (and essentially small).

Definition 2.1.10 Let x : SpecK → X be a τ -point ∈ V.

1) for any presheaf F , the fiber of F over3 x is the set :

Fx := colim(U→X,y)∈Neibx
τ
F (U)

2) the fiber functor associated to x, is the functor

Preshv(V) → Set, F 	→ Fx

3or “at”
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Example 2.1.11 The fiber of the affine line A1 ∈ Preshv(V) over x is4:

1) the strict henselization Osh
X,x of the local ring OX,x of x in X in case

τ = ét.

2) the henselization Oh
X,x of the local ring OX,x of x in X in case τ = Nis.

3) the local ring OX,x of x in X in case τ = Zar.

Lemma 2.1.12 [3] 1) For any presheaf F the canonical map

Fx → (aτF )x

is a bijection.

2) The family of these fiber functors form a conservative set of functors in
the sense that a morphism in Shv(Vτ ) is an isomorphism (resp. a monomor-
phism, an epimorphism) if and only if each of its fibers are bijections (resp.
monomorphisms, surjections).

Lemma 2.1.13 1) For any distinguished square

W → V
↓ ↓ p

U
i→ X

the corresponding square in Shv(VNis) is both cartesian and cocartesian. As
a corollary, one gets a canonical isomorphism of sheaves of sets5 (in the
Nisnevich topology)

V/W ∼= X/U

2) For any closed point x ∈ X ∈ V, with residue field L, the sheaf
X/X − {x} is isomorphic to the sheaf An

L/(An
L − {0}) with n = dimx(X).

3) For any closed point x ∈ X ∈ V, with residue field L, the henselian local
ring Oh

x,X is isomorphic to the local henselian ring Oh
0,An

L
with n = dimx(X).

4We refer the reader to [32] for the notions of henselian rings and henselization
5when F → G is a monomorphism of sheaves of sets, G/F means the categorical

quotient
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The first part is rather formal (and its Zariski analogue also holds). To
prove 2) and 3) one observes that because X is smooth over k, there is an
open subset U of X containing x and an étale morphism f : U → An. Let
then UL → U be the obvious étale morphism (UL denoting U×Spec(L). The
pull back of x in UL is a finite étale L-scheme F which admits (obviously) a
closed point y with residue field L. Write F = {y}�F ′ and Ω := UL −{F ′}
(the open complement of the finite closed subscheme F ′ ⊂ UL).

Then y : Spec(L) → Ω → U is a Nisnevich neighborhood of x and thus:
Ω/Ω − {y} ∼= U/U − {x} ∼= X/X − {x} by 1) (applied twice) and Oh

x,X =
Oh

x,U
∼= Oh

y,Ω. We conclude using now the étale morphism Ω ⊂ UL → An
L

induced by fL and the image z of y in An
L, which is a closed point in An

L

with residue field L (thus after some translation one can assume z = 0). We
thus get in much the same way isomorphisms X/X − {x} ∼= Ω/Ω − {y} ∼=
An

L/(An
L − {0}) and Oh

x,X
∼= Oh

y,Ω
∼= Oh

0,An
L
.

2.2 Simplicial (pre-)sheaves

Recollection on simplicial objects Recall that Δ is the simplicial cat-
egory, i.e. the category of finite ordered sets n := {0, . . . , n} and order
preserving maps. For any i ∈ n, we denote as usual by

di : n − 1 → n

(assuming here n ≥ 1) the i-th coface map, i.e. the unique injective (increas-
ing) map which avoids the value i ∈ n and

si : n + 1 → n

the i-th codegeneracy map, i.e. the unique surjective (increasing) map which
takes twice the value i. These cofaces and codegeneracies maps satisfies al-
together the usual cosimplicial identities [16].

If C is a category, a simplicial object (resp. a cosimplicial object) in C is
a functor Δop → C (resp. Δ → C). Let’s denote by ΔopC the category of
simplicial objects in C (resp. ΔC that of cosimplicial objects).

For instance we will denote by ΔopSet the category of simplicial sets.
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Example 2.2.1 For any integer n ≥ 0, we denote by Δn the n-th standard
simplex Δn ∈ ΔopSet by which we mean the functor

Δop → Set, m 	→ HomΔ(m, n)

and observe, by the Yoneda lemma, that for any simplicial set X the obvious
map

HomΔopSet(Δ
n, X) → Xn

is a bijection.

Example 2.2.2 Let Top denote the category of topological spaces. For each
integer n ≥ 0 we denote as usual by Δn

top the standard topological n-simplex
whose value for each n is the topological space

Δn
top = {(t0, . . . , tn) ∈ R

n+1/Σiti = 1 & ti ≥ 0 for each i ∈ n}

For each i ∈ n, we let ei ∈ Δn
top be the point with coordinates all 0 but ti = 1.

We turn these topological simplices altogether into a cosimplicial topo-
logical space

Δ•
top : Δ → Top

by the sending the increasing map φ : n → m to the only affine (and contin-
uous) map Δn

top → Δm
top which maps ei ∈ Δn

top to eφ(i) ∈ Δm
top.

Example 2.2.3 Given a topological space X, its singular simplicial set, de-
noted by S(X), is the simplicial set

Δop → Set, n 	→ HomTop(Δ
n
top, X) =: Sn(X)

We observe that the functor

Top → Set, X 	→ S(X)

admits as left adjoint the realization functor

| | : Set → Top, Y 	→ |Y |

where |Y | is the realization of Y , i.e. the topological space obtained as the
quotient of

�nYn × Δn
top
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by (the equivalence relation generated by) the relations

(y, φtop(t)) ∼ (φ∗(y), t)

for each (φ : n → m, y ∈ Ym, t ∈ Δn
top).

Equivalently, it is the coequaliser in Top of the obvious diagram:

�n,mYn × Δm
top

→→ �nYn × Δn
top

For any integer n ≥ 0 one has the boundary ∂Δn of the n-standard sim-
plex Δn ∈ ΔopShv(Vtau), is the union over all i ∈ n of all the images6

di(Δn−1) ⊂ Δn (with the convention that ∂Δ0 = ∅). We observe that the re-
alization |∂Δn| is indeed the boundary of the topological standard n-simplex.

Simplicial sheaves More generally, we will be very much interested in the
sequel by the category ΔopShv(Vτ ) of simplicial sheaves in the τ -topology.
We recall here some basic notions and constructions that can be performed
in that category.

For any set E we still denote by E its associated sheaf in the Zariski
topology. It is clearly the sheaf of locally constant functions to the discrete
set E and is in fact a sheaf in the étale (and Nisnevich) topology as well.
We thus get a functor Set → Shv(Vτ ) and extend it to a functor ΔopSet →
ΔopShv(Vτ ). We still denote by the same letter both a simplicial set K and
its associated simplicial sheaf in ΔopShv(Vτ ). For example, for any integer
n ≥ 0 one has the n-standard simplex Δn ∈ ΔopShv(Vtau), its boundary
∂Δn, etc... For each integer n ≥ 0 we will set

Sn := Δn/∂Δn

and will call it the n-sphere. Observe with our convention that

S0

is just the sum of two points.

The functor ΔopSet → ΔopShv(Vτ ) always commutes to colimits (for
instance, one can check it by computing the fibers at each τ -point).

6also called the i-th face of Δn
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We will always denote by ∅ the initial object of ΔopShv(Vtau) (this con-
vention is compatible with the previous because the sheaf associated with the
empty set is the initial object) and by ∗ the final object, i.e. the simplicial
sheaf (associated to) Δ0 which is also the final object in ΔopShv(Vτ ) also
called the point.

We let ΔopShv•(Vτ ) denote the category of pointed simplicial sheaves in
the τ -topology. As usual, if X and Y denote pointed simplicial sheaves, their
wedge is the pointed simplicial sheaf colimit of the (obvious) diagram

∗ → Y
↓
X

and is denoted X ∨ Y . And the (pointed) quotient simplicial sheaf

X × Y/X ∨ Y
is denoted X ∧ Y and is called the smash-product of X and Y .

Remark 2.2.4 We observe that for n > 1 the two simplicial sets

Sn

and
S1 ∧ · · · ∧ S1 (n copies)

are not isomorphic.

Let X be a pointed simplicial sheaf. The cone of X is the pointed simpli-
cial sheaf X ∧Δ1, where Δ1 is pointed by its 0-vertex d1 : ∗ = Δ0 → Δ1. The
cone of X is denoted by C(X ). The 0-coface d0 : ∗ → Δ1 induces a canon-
ical monomorphism X → C(X ). The quotient simplicial sheaf C(X )/X is
isomorphic to the smash product

X ∧ S1

Let f : X → Y be a pointed morphism of pointed simplicial sheaves.
The cone of f , denoted by C(f), is the colimit in the category of pointed
simplicial sheaves of the diagram :

X → Y
↓

C(X )
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There is thus a canonical monomorphism Y → C(f) whose cofiber C(f)/Y
is canonically isomorphic to X ∧ S1.

Function objects For any simplicial sheaf Y ∈ ΔopShv(Vτ), the functor

ΔopShv(Vτ ) → ΔopShv(Vτ ),X 	→ X × Y
has a right adjoint which we denote by Z 	→ Hom(Y ,Z).

If now Y is a pointed simplicial sheaf, the functor

ΔopShv•(Vτ ) → ΔopShv•(Vτ ),X 	→ X ∧ Y
has a right adjoint which we denote by Z 	→ Hom•(Y ,Z).

Clearly, Hom•(Y ,Z) is the fiber at the base point of Z of the evaluation
morphism (at the base point of Y)

Hom(Y ,Z) → Z

2.3 The classical homotopy category [30]

Recall that for a topological space X, π0(X) denote the set of its arcwise
connected components and that for each x ∈ X and each integer n > 0

πn(X, x)

denotes the n-th homotopy group of X at x.

Definition 2.3.1 1) A continuous map f : X → Y in Top is called a weak
equivalence if and only if π0(f) is bijective and for each x ∈ X and each n > 0
the homomorphism πn(f, x) : πn(X, x) → πn(Y, f(x)) is an isomorphism.

We denote by W the class of all weak equivalences.

2) A morphism f in ΔopSet is called a simplicial weak equivalence if and
only if the realization |f | is a weak equivalence.

We denote by Ws the class of simplicial weak equivalences.

Remark 2.3.2 Using the interval [0, 1] which is homeomorphic to Δ1
top one

defines the notion of homotopy equivalences between topological spaces as
usual. Obviously a homotopy equivalence is a weak equivalence. By the
Whitehead theorem, a continuous map between C.W.-complexes is a weak
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equivalence if and only if it is a homotopy equivalence. But this is not true
in general.

As for any simplicial set X the space |X| has a canonical structure of
C.W.-complex, we see that a map between simplicial sets X → Y is a sim-
plicial weak equivalence if and only if the realization

|X| → |Y |
is a homotopy equivalence.

Using the 1-simplex Δ1 ∈ ΔopSet and its two vertices d1 : ∗ → Δ1 and
d0 : ∗ → Δ1 one can define in the obvious way the notion of simplicial
homotopy equivalence (in ΔopSet). Obviously such a simplicial homotopy
equivalence is a simplicial weak equivalence, but, again, the converse is not
true in general.

Definition 2.3.3 [30] We denote by H, the category Top[W−1] formally ob-
tained from Top by inverting the weak equivalences. It is called the homotopy
category (of topological spaces).

In much the same way, we denote by Hs, the category ΔopSet[W−1
s ] for-

mally obtained from ΔopSet by inverting the simplicial weak equivalences. It
is called the homotopy category of simplicial sets.

The remark above implies that the realization functor

ΔopSet → Top, X 	→ |X|
maps Ws to W . This implies (by the very definition of both categories) that
| − | induces a functor

Hs → H
still called the realization functor.

Theorem 2.3.4 [30],[16, page 65] For any topological space X, the natural
map (given by the adjunction)

|S(X)| → X

is a weak equivalence, for any simplicial set Y the natural map (given by the
adjunction)

Y → S(|Y |)
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is a simplicial weak equivalence. Thus the functor S maps weak equivalences
to simplicial weak equivalences and the induced functors

| − | : Hs → H and S : H → Hs

are equivalences of categories inverse to each other.

Quillen’s homotopical algebra [30] We will now recall the basic notions
of Quillen’s notion of model category. Indeed we will in fact use the following
notion of model category whose main difference with Quillen’s original notion
in [30] is that one requires existence all limits and colimits as well as of
functorial factorizations.

Definition 2.3.5 [30] Let C be a category and i : X → Y and p : E → B be
morphisms in C. We say that i has the left lifting property (LLP for short)
with respect to p or, equivalently, that p has the right lifting property (RLP
for short) if for any commutative square of the form

X
f→ E

↓ i p ↓
Y

g→ B

there exists a morphism h : Y → E which keeps the diagram commutative,
i.e. such that p ◦ h = g and h ◦ i = f .

Definition 2.3.6 Let C be a category equipped with three classes of mor-
phisms (W, C, F ) respectively called the weak equivalences, the cofibrations
and the fibrations. We say that (C, W, C, F ) is a model category (or that
(W, C, F ) is a model category structure on C) if the following axioms hold :

• MC1 C has all small limits and colimits

• MC2 If f and g are two composable morphisms and two of f , g or
g ◦ f are weak equivalences, then so is the third

• MC3 If the morphism f is retract of g and g is a weak-equivalence,
cofibration or fibration then so is f
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• MC4 Any fibration has the right lifting property with respect to trivial
cofibrations7 and any trivial fibration8 has the right lifting property with
respect to cofibrations

• MC5 Any morphism f can be functorialy (in f) factorized as a com-
position p ◦ i where p is a fibration and i an trivial cofibration and as a
composition q ◦ j where q is an trivial fibration and j a cofibration.

The associated homotopy category is the category C[W−1] obtained by
formally inverting W in C [11]. One can check [30] using the previous axioms
that this category is well defined.

Remark 2.3.7 One should observe that in a model category structure, any
two of the three classes (W, C, F ) determines the third. For instance, F
is exactly the class of morphism with the RLP with respect to all trivial
cofibrations and C that of morphisms with the LLP with respect to all trivial
fibrations. One can also check that F ∩W is exactly the class of morphisms
having the RLP with respect to all cofibrations, that C ∩ W is exactly the
class of morphisms having the LLP with respect to all fibrations, and thus W
is the class of morphisms which can be written as a composition of a trivial
cofibration followed by a trivial fibration.

Here are the two fundamental examples of model category structures.

Example 2.3.8 [30] The 4-tuple (Top, W, C, F ) is a model category struc-
ture, in which W is the class of weak equivalences defined above, the class
F of fibrations is that of Serre fibrations, i.e. morphisms with the RLP with
respect to each inclusion In−1 ⊂ In, n > 0, I denoting the unit interval in R,
the inclusion being induced by the inclusion {0} ⊂ I, and C is what it has
to be : that of morphisms with the LLP with respect to all trivial fibrations.
We observe that the inclusion X → Y of a relative C.W.-pair (Y, X) is a
cofibration.

Example 2.3.9 [30] The 4-tuple (ΔopSet, Ws, C, F ) is a model category
structure, in which Ws is the class of simplicial weak equivalences defined
above, the class C of cofibrations is that of degreewise inclusions, and F is

7i.e. cofibrations which are also weak equivalences
8i.e. a fibration which is also a weak equivalence

17



what it has to be : that of morphisms with the RLP with respect to all trivial
cofibrations. It can be shown [11] that F indeed coincides with the class of
Kan fibrations.

Let C be a category and let

Δ• : Δ → C
be a cosimplicial object.

If all the colimits exist in C the previous functor induces a realization
functor

ΔopSet → C, K 	→ |K|
where |K| is the coequaliser in C of the obvious diagram:

�n,mKn × Δm →→ �nKn × Δn

For instance one has tautologically |Δn| = Δn. Beware that in general the
realization functor K 	→ |K| doesn’t commutes to finite products.

If C has moreover all the finite products, then for any pair (X, Y ) of
objects in C one define the functional simplicial set S(X, Y ) has the simplicial
set

n 	→ HomC(X × Δn, Y )

Of course the two previous constructions are related by the following natural
bijection in X, Y ∈ C and K ∈ ΔopSet :

HomC(X × |K|, Y ) ∼= HomΔopSet(K, S(X, Y ))

One says that two morphisms f : X → Y and g : X → Y are simplicially
homotopic if there is a morphism

H : X × Δ1 → Y

such that H ◦ d0 = g and H ◦ d1 = f (here d0 and d1 are the obvious cofaces
map ∗ = Δ0 → Δ1). We denote by

π(X, Y )

the quotient of the set of morphism HomC(X, Y ) by the equivalence relation
generated by the above simplicial homotopy relation. This set is of course
identical to the set π0(S(X, Y )).

18



Definition 2.3.10 Given a model category (C, W, C, F ) and

Δ• : Δ → C
a cosimplicial object of C, we say that Δ• is compatible to the model category
structure if the following axiom holds

• SM7’ For any cofibration i : X → Y and any cofibration j : K → L ∈
ΔopSet the obvious morphism

X × |L| �X×|K| Y × |K| → Y × |L|
is a cofibration which is moreover trivial if either i or j is.

This axiom immediately implies the following property9 that for any cofi-
bration i : X → Y and any fibration E → B, the obvious map of simplicial
sets

S(Y, E) → S(X, E) ×S(X,B) S(Y, B)

is a Kan fibration which is moreover trivial if either i or p is.

In a model category, call cofibrant an object X such that the canonical
morphism ∅ → X from the initial object to X is a cofibration, and fibrant
an object Y such that the canonical morphism Y → ∗ from Y to the final
object is a fibration.

Then Quillen proves the following principle of the homotopical algebra :

Theorem 2.3.11 Given a simplicial model category (C, Δ•, W, C, F ) with
associated homotopy category H then for pair (X, Y ) of a cofibrant object X
and a fibrant object Y the natural map HomC(X, Y ) → HomH(X, Y ) induces
a bijection

π(X, Y ) ∼= HomH(X, Y )

To compute the set HomH(X, Y ) for general X and Y , the principle of
homotopical algebra answers: choose a trivial fibration Xc → X with Xc

cofibrant (such an Xc is called a cofibrant resolution of X), the choose a
trivial cofibration Y → Yf with Yf fibrant (such a Yf is called a fibrant
resolution of Y ) and then observe the following sequences of bijections

HomH(X, Y ) ∼= HomH(Xc, Y ) ∼= HomH(Xc, Yf) ∼= π(Xc, Yf)

The first two bijections being completely formal, the last one being a partic-
ular case of the previous theorem.

9See Axiom SM7 of simplicial model categories [30]
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2.4 The simplicial homotopy category of sheaves

Definition 2.4.1 [13, 14] A morphism in ΔopShv(Vτ ) is called a τ -simpli-
cial weak equivalence (or for short if no confusion can arise a simplicial weak
equivalence) if and only if each of its fibers at τ -points are weak equivalences
of simplicial sets.

We denote by W τ
s (or simply Ws) the class of simplicial weak equivalences.

It follows from [14] that endowed with the class Ws of simplicial weak
equivalences, the class C of monomorphisms as cofibrations, the class Fs of
morphisms with the RLP with respect to morphisms in C ∩Ws as fibrations
and the standard cosimplicial simplicial sheaf

Δ• : Δ → ΔopShv(Vτ )

that the category ΔopShv(Vtau) is simplicial model category.
Let us denote by Hτ

s (Vτ ), the associated homotopy category. That cate-
gory is called the simplicial homotopy category of sheaves in the τ -topology.

The associated sheaf functors induced obvious functors

Hτ
s (VZar) → Hτ

s (VNis) → Hτ
s (Vét)

between these categories. Each of these functors admits a right adjoint which
is induced by the forgetful functors (in the derived sense).

For any simplicial sheaf Y the functor

ΔopShv(Vτ ) → ΔopShv(Vτ ),X 	→ X × Y

preserves simplicial weak equivalences and thus induces a functor still de-
noted

Hs(Vτ ) → Hs(Vτ ),X 	→ X × Y
It has as right adjoint the functor

RHom(Y ,−) : Z 	→ Hom(Y ,Zf)

(where Z 	→ Zf denotes a chosen functorial fibrant resolution).
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The pointed homotopy category We say that a morphism of pointed
simplicial sheaves is a pointed simplicial weak equivalence if its underlying
morphism of (unpointed) simplicial sheaves is a simplicial weak equivalence.
We let Ws denote as well the class of pointed simplicial weak equivalences (in
the category ΔopShv•(Vτ ) of pointed simplicial sheaves). Endowed with the
notions of pointed simplicial weak equivalences and pointed monomorphisms
as cofibrations, the category ΔopShv•(Vτ ) becomes a model category, whose
homotopy category is denoted by Hs,•(Vτ ).

For any simplicial sheaf X ∈ ΔopShv(Vτ ) we denote X+ the pointed
simplicial sheaf obtained by adding a base point to X . The functor

ΔopShv(Vτ ) → ΔopShv•(Vτ ),X → X+

so obtained is left adjoint to the forgetful functor

ΔopShv•(Vτ ) → ΔopShv(Vτ )

For any pointed simplicial sheaf Y the functor

ΔopShv•(Vτ ) → ΔopShv•(Vτ ),X 	→ X ∧ Y
preserves pointed simplicial weak equivalences and thus induces a functor
still denoted

Hs,•(Vτ ) → Hs,•(Vτ ),X 	→ X ∧ Y
It has as right adjoint the functor

RHom•(Y ,−) : Z 	→ Hom•(Y , Zf)

(where Z 	→ Zf denotes a chosen functorial fibrant resolution).

Example 2.4.2 When Y is the simplicial circle S1 := Δ1/∂Δ1 the functor

Hs,•(Vτ ) → Hs,•(Vτ ),X 	→ X ∧ S1

is denoted
Σ : Hs,•(Vτ ) → Hs,•(Vτ ),X 	→ Σ(X )

and called the (simplicial) suspension. Its right adjoint is denoted

Ω : Hs,•(Vτ ) → Hs,•(Vτ ),Z 	→ Ω(Z)

and called the loop space functor.
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The B.G.-property in the Nisnevich topology Here we recall the no-
tion of simplicial presheaves on V with the B.G. property [25]. This notion
is directly inspired from the corresponding notion in the Zariski topology
introduced and studied by Brown and Gersten in [8].

Definition 2.4.3 [25] Let X ∈ ΔopPreshv(V) be a simplicial presheaf. One
says that X has the B.G. property if and only if for any distinguished square
as in 2.1.6 the commutative square (of simplicial sets)

X (X) → X (V )
↓ ↓

X (U) → X (W )

is homotopy cartesian.

Example 2.4.4 Any simplicial sheaf in the Nisnevich topology X which
is fibrant for the corresponding simplicial model category structure has the
B.G.-property : this is Remark 3.1.15 of [25].

Remark 2.4.5 Of course this notion is just the analogue for sheaves in the
Nisnevich topology of the property introduced in [8] in the Zariski topology.
The following theorem is proven in [25, Lemma 3.1.18] and is the analogue
of the main theorem of [8].

Theorem 2.4.6 [25] Let f : X → Y be a morphism of simplicial presheaves.
Assume that X and Y have the B.G.-property and that aNis(f) : aNis(X ) →
aNis(Y) is a simplicial weak equivalence (in the Nisnevich topology). Then
for any U ∈ V the map of simplicial sets :

X (U) → Y(U)

is a simplicial weak equivalence.

Corollary 2.4.7 [25] Let X be a simplicial presheaf with the B.G. property.
Then for any U ∈ V the obvious map

π0(X (U)) → HomHNis
s (k)(U, aNis(X ))

is a bijection. If moreover X is a pointed simplicial presheaf with the B.G.
property, then for any integer n ≥ 0 and any U ∈ V the obvious map

πn(X (U)) → HomHs,•(VNis)((U+) ∧ Sn, aNis(X ))

is a bijection.
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Indeed choose a fibrant resolution aNis(X )f of aNis(X ) and apply the
principle of homotopical algebra to compute HomHNis

s (k)(U, aNis(X )) as

π0(aNis(X )f(U))

Then conclude by theorem 2.4.6 taking into account that aNis(X )f also has
the B.G. property and that X → aNis(X )f induces a simplicial weak equiv-
alence aNis(X ) → aNis(X )f .

Example 2.4.8 Our fundamental example is the following. Let X 	→ K(X)
the presheaf of pointed simplicial sets defined in [36] such that

πn(K(X)) = KQ
n (X)

is Quillen n-th higher K-group. By the above corollary, we see that for any
integer n ≥ 0 and any X ∈ V the obvious map

KQ
n (X) → HomHs,•(VNis)((X+) ∧ Sn, aNis(K))

is a bijection. We observe that the analogue statement holds in Zariski
topology but not in the étale topology (because algebraic K-theory has not,
in general, descent in the étale topology).

3 Unstable A
1-homotopy theory

¿From now on, unless otherwise stated, we will always work in the Nisnevich
topology.

3.1 The A1-homotopy category [25]

A1-local objects and A1-weak equivalences

Definition 3.1.1 [25] 1) An object Z ∈ ΔopShv(VNis) is called A1-local if
and only if for any X ∈ ΔopShv(VNis), the projection X × A1 → X induces
a bijection :

HomHs(k)(X ,Z) → HomHs(k)(X × A
1,Z)

2) A morphism f : X → Y in ΔopShv(VNis) is called an A1-weak equiv-
alence if and only if for any A1-local Z, the map :

HomHs(k)(Y ,Z) → HomHs(k)(X ,Z)

is bijective.
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Together with V. Voevodsky, we proved in [25] that endowed with the
class WA1 of A1-weak equivalences, the class C of monomorphisms as cofi-
brations and the class FA1 of A1-fibrations10 the category ΔopShv(VNis) be-
comes a model category. The associated homotopy category obtained from
ΔopShv(VNis) by inverting the A1-weak equivalences is denoted H(k) and
called the homotopy category of smooth k-schemes.

Remark 3.1.2 Any simplicial weak equivalence is of course an A1-weak
equivalence. Also, by definition the projection

X × A
1 → X

is an A1-weak equivalence (but not a simplicial weak equivalence).
A simplicially fibrant simplicial sheaf X is A

1-fibrant if and only if it is
A1-local.

Remark 3.1.3 There are two different cosimplicial objects which are com-
patible with the model category (ΔopShv(VNis), WA1 , C, FA1). The first one
is of course the standard cosimplicial simplicial simplex

n 	→ Δn

The second one is the following algebraic standard cosimplicial simplicial
simplex

n 	→ Δn
A1 := Spec(k[T0, . . . , Tn]/ΣTi = 1)

(observe that for any n, Δn ∼= An, but not functorialy). In particular, given
an A1-fibrant simplicial sheaf Y and a simplicial sheaf X (which is always
cofibrant), on the set

HomΔopShv(VNis)(X ,Y)

the simplicial homotopy equivalence relation coincides with the A1-homotopy
relation and the quotient set is the set of morphisms

HomH(k)(X ,Y)

Remark 3.1.4 Let’s denote by Hs,A1(VNis) ⊂ Hs(VNis) the full subcategory
consisting of A1-local simplicial sheaves. The inclusion Hs,A1(k) ⊂ Hs(VNis)
admits11 a left adjoint which we denote LA1(−) : Hs(VNis) → Hs,A1(k), and

10as opposed to simplicial fibrations
11See [25]
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which is called the A1-localization functor. This functor sends by definition
A1-weak equivalences to isomorphisms, and thus induces a functor H(k) →
Hs,A1(VNis) which is an equivalence of categories.

In particular, if X is a simplicial sheaf and Y an A1-local simplicial sheaf
the canonical map

HomHs(VNis)(X ,Y) → HomH(k)(X ,Y)

is a bijection.

Example 3.1.5 The functor ΔopSet → ΔopShv(VNis) obviously sends a
weak equivalence of simplicial sets to a simplicial weak equivalence and thus
also to an A1-weak equivalence. We thus get a canonical functor

HsH(k)

Given a complex embedding σ : k → C one gets a functor

ρσ : H(k) → H
induced by taking the “realization of the simplicial topological space of com-
plex points”. The composition

Hs → H
is of course the equivalence of categories considered above.

If σ : k → R is a real embedding we have two induced functors (which
are both left inverse to Hs → H(k))

H(k) → H
The first one is the previous one and the second one is induced by taking the
“realization of the simplicial topological space of real points”. Beware that
these are distinct (not isomorphic functors). For instance the topological
space of complex points of the affine line minus 0 is C× ∼= S1 (in H). On the
other hand the topological space of real points of the affine line minus 0 is
R× ∼= S0.

Example 3.1.6 Let P∞ be the colimit of the projective spaces Pn, Pn being
included (in the obvious way) into Pn+1. Then it is proven [25, 19] that the
Picard group of X is naturally isomorphic to HomH(k)(X, P∞).
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Example 3.1.7 Recall from example 2.4.8 that the pointed simplicial sheaf
K := aNis(K(−)) represents in Hs,•(VNis) Quillen’s higher K-groups Kn

functor in the sense that for any smooth k-variety X one has a canonical
isomorphism

KQ
n (X) ∼= HomHs,•(VNis)((X+) ∧ Sn, K)

By Quillen’s theorem [31, 36], the groups homomorphisms

KQ
n (X) → KQ

n (X × A
1)

are isomorphisms. This can be shown to imply (because K is a group object
in Hs(VNis)) that the simplicial sheaf K is A

1-local. Thus one has a canonical
isomorphism, for any X ∈ V

K0(X) ∼= HomH(k)(X, K)

In [25] it is proven that K is isomorphic in H(k) to both Z × Gr (where
Gr means the infinite algebraic grassmanian) and Z × BGl (where BGl is
the classifying simplicial sheaf of the group sheaf Gl (infinite general linear
group).

In general it is very difficult to compute HomH(k)(X, Y ) when X and Y
are of finite type, for instance if X and Y are smooth k-varieties. Surprisingly
however, in the few cases where this set can be computed and X is affine,
this set coincides with the set of naive A1-homotopy classes of morphisms
from X to Y . That might be always the case. The first non trivial case of
that guess is when X = Spec(k). Our conjecture now takes the form:

If X is a smooth k-variety, the natural map

X(k) → HomH(k)(Spec(k), X)

is surjective and identifies the right hand side with the quotient of the set
X(k) of k-rational points by the equivalence relation generated by:

(x ∼ y) ⇔ ∃h : A
1 → X/h(0) = x and h(1) = y

This is true12 when X is A1-rigid in the sense that ∀U ∈ Sm(k) the map
HomSm(k)(U, X) → HomSm(k)(U × A1, X) is bijective. For instance for Gm,
for curves of genus > 0, abelian varieties, products of those, subschemes of
those, etc...

12cf [25]
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Remark 3.1.8 The surjectivity always holds by [25]: indeed for any X ∈
ΔopShv(VNis), the map

X0(k) → HomH(k)(Spec(k),X )

is surjective.
In particular, the notion of having a k-rational point is invariant under

A1-weak equivalences. This means that if X and Y are isomorphic in H then
X (k) �= ∅ ⇔ Y(k) �= ∅.

Pointed A1-homotopy category A morphism in ΔopShv•(VNis) is said to
be a pointed A

1-weak equivalence if it is an A
1-weak equivalence after forget-

ting the base point. Again by [25], endowed with the notions of pointed A1-
weak equivalences and pointed monomorphisms as cofibrations, the category
ΔopShv•(VNis) becomes a model category. The associated homotopy cate-
gory is denoted H•(k) and called the pointed homotopy category of smooth
k-schemes.

The forgetful functor ΔopShv•(VNis) → ΔopShv(VNis) and its left adjoint
ΔopShv(VNis) → ΔopShv•(VNis),X 	→ X+ both preserves A1-weak equiva-
lences and the induced functors on homotopy category are still adjoint to
each other.

For any fixed Y ∈ ΔopShv•(VNis), the smash-product by Y preserves
A1-weak equivalences, inducing a functor

H•(k) → H•(k),X 	→ X ∧ Y
This functor admits a right adjoint which we denote by

RA1Hom•(Y ,−) : H•(k) → H•(k)

Example 3.1.9 The suspension functor Σ : Hs,•(VNis) → Hs,•(VNis), X 	→
X ∧ S1 preserves A

1-weak equivalences and induces a functor still called the
suspension functor and denoted by

Σ : H•(k) → H•(k)

Its right adjoint
Ω : H•(k) → H•(k)

is induced by Ω : Hs,•(VNis) → Hs,•(VNis) which is easily seen to preserve
A1-local objects.
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Example 3.1.10 The cocartesian square, corresponding to the open cover-
ing of P1 by the two standard affine line A1 and A1 :

Gm → A1

↓ ↓
A1 → P1

defines an isomorphism in Hs,•(VNis)

T := A
1/Gm

∼= P
1/A

1

But in H•(k), T is clearly weakly equivalent to Σ(Gm) (because A1 → ∗ is
an A1-weak equivalence) and P1 → P1/A1 is clearly an A1-weak equivalence
as well. Thus we get canonical H•(k)-isomorphisms

P
1 ∼= T ∼= S1 ∧ Gm

Example 3.1.11 With this notions introduced, the example 2.4.8 easily im-
plies (as in 3.1.7) that for any smooth k-variety X one has canonical isomor-
phisms

KQ
n (X) ∼= HomH•(k)((X+) ∧ Sn, K)

Thus (cf 3.1.7) one has natural isomorphisms

KQ
n (X) ∼= HomH•(k)((X+) ∧ Sn, Z × BGl) ∼= HomH•(k)((X+) ∧ Sn, Z × Gr)

It was observed in [19, 39] that Quillen’s computation of the K-groups of
X × P1 implies that the adjoint β̃ of the Bott morphism

(Z × Gr) ∧ P
1 → Z × Gr

which classifies the exterior tensor product by the virtual vector bundle of
rank zero 1− [η] (where η is the canonical line bundle on P1), is an A1-weak
equivalence

Z × Gr
∼=→ RA1Hom•(P

1, Z × Gr)

(Bott periodicity.)
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3.2 A1-localization of connected simplicial sheaves

In what follows, we consider the affine line A1 as pointed by 0. For any
X ∈ ΔopShv•(VNis), let’s denote by ev1 : Hom•(A

1,X ) → X the evaluation
at 1

Lemma 3.2.1 Let X be a simplicially fibrant simplicial sheaf. The following
conditions are equivalent :

(i) X is A1-local ;

(ii) the morphism of simplicial sheaves

X → Hom(A1,X )

adjoint to the projection X ×A1 → X is a simplicial weak equivalence ;

(iii) the morphism of simplicial sheaves

ev0 : Hom(A1,X ) → X

“evaluation at 0” is a simplicial weak equivalence.

Assume moreover that X is 0-connected13 and pointed. Then the above
conditions are equivalent to the following ones :

(iv) the functional object Hom•(A
1,X ) is weakly contractible14 ;

(v) for any smooth k-scheme U , any integer n ∈ N, the map

HomHs,•(VNis)((U+)∧Sn, Hom•(A
1,X )) → HomHs,•(VNis)((U+)∧Sn,X )

is trivial (as a map of pointed sets).

13which means each of its fibers are 0-connected, or equivalently, that the coequaliser of
d0 and d1, X1

→→ X0 is the point
14i.e. the map to the point is a simplicial weak equivalence
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The first three conditions are easily seen to be equivalent. But X being
simplicially fibrant pointed and 0-connected, for the evaluation at 0

Hom(A1,X ) → X

to a simplicial weak equivalence it is necessary and sufficient that the fiber
be weakly contractible. This proves the equivalence of the first 4 conditions
because that fibre is the pointed function object Hom•(A

1,X ).
The implication (iv) ⇒ (v) is trivial. Let’s prove the converse. Assume

(v). By lemma 3.2.2 below, it is sufficient to show that for any smooth k-
scheme U , any integer n ≥ 0, any Hs,•(VNis)-morphism f : A1∧ (U+)∧Sn →
X is trivial.

But for any morphism of pointed simplicial sheaves

f : Y ∧ A
1 → X

let f̃ : Y ∧ A
1 → Hom•(A

1,X ) be the adjoint of the composition

Y ∧ (A1 ∧ A
1)

IdY∧μ→ Y ∧ A
1 f→ X

where μ : A1 ∧ A1 → A1 denote the product of the ringed object A1. Then
the following diagram is commutative (in ΔopShv•(VNis)) :

Y ∧ A1 f̃→ Hom•(A
1,X )

|| ↓ ev1

Y ∧ A1 f→ X
This easily allows one to finish the proof of the lemma.

Lemma 3.2.2 A pointed simplicial sheaf X is weakly contractible if and only
if for any n ≥ 0, any U ∈ Sm(k), any Hs,•(VNis)-morphism f : Sn ∧ (U+) →
X is trivial.

Indeed, we may assume X is simplicially fibrant. If it is weakly con-
tractible the conclusion is clear. Conversely, under the assumption of the
lemma, the pointed fibrant simplicial set X (U) has all its homotopy groups
trivial (at the base point) and is thus contractible. This clearly implies that
X is weakly contractible.
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Construction of the A1-localization of a pointed connected simpli-
cial sheaf Let Y 	→ Yf be a functorial simplicial fibrant resolution. Let
X be a pointed simplicial sheaf. We let L(1)(X ) be the cone of the obvious
morphism

ev1 : Hom•(A
1,Xf) → Xf

Let L
(1)
f (X ) be L(1)(X )f . We let X → L

(1)
f (X ) be the obvious morphism of

pointed simplicial sheaves. Define by induction on n ≥ 0, L(n) := L
(1)
f ◦L(n−1)

f .

We have natural morphisms, for any X , L
(n−1)
f (X ) → L

(n)
f (X ) and we set

L∞(X ) = colimn∈NL
(n)
f (X ).

Proposition 3.2.3 Let X be a pointed connected simplicial sheaf. Then the
simplicial sheaf L∞(X ) is A

1-local and the morphism

X → L∞(X )

is an A
1-weak equivalence.

The product μ of A1 considered above induces a morphism

Hom•(A
1,Xf) ∧ A

1 → Hom•(A
1,Xf)

which is left inverse to the section at 1

Hom•(A
1,Xf) → Hom•(A

1,Xf) ∧ A
1

Thus Hom•(A
1,Xf) being a retract of Hom•(A

1,Xf)∧A1 is A1-weakly con-
tractible (i.e. isomorphic to ∗ in H•(k)). So we conclude that each mor-
phism X → L(1)(X ) is an A

1-weak equivalence, and thus the composition
X → L∞(X ) as well.

The fact that L∞(X ) is A1-local follows then formally from lemma 3.2.1
and the following lemma.

Lemma 3.2.4 Let X 0 → X 1 → · · · → Xm → . . . be a direct system of
pointed simplicial sheaves. Then for any integer n and any U ∈ Sm(k) the
map

colimm HomHs(VNis)(S
n ∧ (U+),X n) → HomHs(VNis)(S

n ∧ (U+), colimmXm)

is a bijection.
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Connectivity and A1-localization Let X be a simplicial sheaf. The
colimit of the diagram (in Shv(VNis)) :

X1
→→ X0

is denoted by π0(X ). It is the sheaf associated to the presheaf U 	→ π0(X (U)).
We say that X is 0-connected if and only if π0(X ) is the trivial sheaf.

We first deduce the following corollary from the description we gave above
of the A1-localization of a 0-connected, pointed simplicial sheaf.

Corollary 3.2.5 (see [25]) Let X be a 0-connected simplicial sheaf. Then
its A1-localization is 0-connected.

Indeed, X can be pointed (indeed the map X0(k) → ∗ is surjective be-
cause F 	→ F (k) is a fiber functor in the Nisnevich topology). But then
clearly the simplicial sheaf L∞(X ) constructed above is still 0-connected.

Assume moreover that X is a pointed simplicial sheaf. Then for any
n ≥ 1 one denote by πn(X , x) the sheaf of groups (abelian groups if n ≥ 2)
associated to the presheaf U 	→ πn(X (U), x).

Definition 3.2.6 For any n ≥ 1 we will say that X is n-connected if it is
0-connected and if for any i ∈ {1, . . . , n} the sheaf πn(X , x) is trivial.

Example 3.2.7 Let Ab(VNis) be the (abelian) category of sheaves of abelian
groups on V. For any simplicial sheaf X one defines the chain complex15

C∗(X ) as follows. Let Z[X ] be the free simplicial sheaf of abelian groups
generated by X . Then C∗(X ) is the normalized chain complex16 in Ab(VNis)
associated with Z[X ].

Let M ∈ Ab(VNis) be a sheaf of abelian groups and let n ≥ 0 be an
integer. Let M [n] denotes the chain complex in Ab(VNis) concentrated in
degree n where it equals the sheaf M . The functor

X 	→ HomC∗(Ab(VNis))(C∗(X ), M [n]) =: Zn(X ; M)

15“chain complex” means the differential has degree −1, “cochain complex” means the
differential has degree +1

16See [16] for the definition of the normalized chain complex
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is representable by a simplicial sheaf (of abelian groups) denoted K(M, n) and
called the Eilenberg-MacLane simplicial sheaf of type (M, n). This simplicial
sheaf has the following homotopy sheaves

πm(K(M, n), 0) =

{
0 if m �= n
M if m = n

and is thus (n − 1)-connected.

Remark 3.2.8 One can show [14, 25] that for any X ∈ V, any M ∈
Ab(VNis) and any n ≥ 0 the group

HomHs(VNis)(X, K(M, n))

is canonically isomorphic to

Hn
Nis(X; M)

Definition 3.2.9 Let n ≥ 0 be an integer. We say that M ∈ Ab(VNis) is
n-strictly A1-invariant if and only if for any smooth k-scheme X and any
integer i ∈ {0, . . . , n} the obvious homomorphism

H i
Nis(X; M) → H i

Nis(X × A
1; M)

is an isomorphism.

Observe that for n = 1 this definition obviously extends to sheaves of non-
commutative groups, and for n = 0 to sheaves of sets. Using the previous
remark, one easily checks the following :

Lemma 3.2.10 Let n ≥ 0 be an integer. Then for any sheaf M (which is to
be a sheaf of groups for n = 1 and of abelian groups for n > 1), the simplicial
sheaf K(M, n) is A1-local if and only if M is n-strictly A1-invariant.

It seems reasonable to us to conjecture

Conjecture 1 A 0-connected, pointed simplicial sheaf X is A1-local if and
only if for any n ≥ 1, the sheaf

πn(X ; x)

is n-strictly A1-invariant.

33



This conjecture easily implies17, using an obvious adjunction argument,
the following other conjecture (which should generalize Corollary 3.2.5) :

Conjecture 2 The A
1-localization of an n-connected simplicial sheaf X is

still n-connected.

Our main result in these notes will be to prove a “stable” analogue of
that conjecture.

3.3 Thom spaces and homotopy purity

Thom spaces of closed immersions

Definition 3.3.1 Let i : X → Y be a closed immersion of smooth k-varieties
whose open complement is U ⊂ Y . The Thom space Th(i) of i is the pointed
sheaf of sets

Y/U

Example 3.3.2 The usual example is that of vector bundles [25]. If ξ is a
vector bundle over X ∈ V with total space E(ξ), the Thom space of the zero
section

s0 : X → E(ξ)

is also called the Thom space of ξ.
We observe that if ξ is the trivial bundle of rank n, On, over X then

Th(On) is canonically isomorphic to the smash-product

A
n/(An − {0}) ∧ (X+)

and, more generally, if ξ and η are respectively vector bundles over X ∈ V
and Y ∈ V the Tom space of their external Whitney sum ξ�η (over X × Y )
is the smash-product

Th(ξ�η) ∼= Th(ξ) ∧ Th(η)

Example 3.3.3 For any closed point x ∈ X ∈ V, with residue field L the
Thom space of the closed immersion

x : Spec(L) → X

is isomorphic (non canonically) to the sheaf An/(An − {0}) ∧ (Spec(L)+).
This follows from Lemma 2.1.13.

17In fact, using the trick we will use in section 4.2 it might be the case that this two
conjectures are equivalent
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The homotopy purity theorem [25] The next theorem generalizes much
further the previous example. This is one of the most important property of
our homotopy category H(k)18.

Theorem 3.3.4 [25] For any closed immersion

i : X → Y

with normal vector bundle νi over X there is a canonical isomorphism in the
pointed homotopy category H•(k) of the form

Th(i) ∼= Th(νi)

In standard differential topology, this lemma would follow from the exis-
tence of tubular neighborhoods. Here, instead, we have to use a deformation
to the normal bundle process [25].

An application of the homotopy purity theorem

Definition 3.3.5 Let X be a simplicial sheaf and n ≥ 0 an integer.
We say that X is weakly n-connected if and only if for any irreducible

smooth k-scheme X with field of fractions F , the simplicial set X (F ) is n-
connected.

We recall that X (F ) is the fiber19 at the generic point of X.
Our application of Theorem 3.3.4 is the following:

Lemma 3.3.6 Let X be an A1-local simplicial sheaf and n ≥ 0 an integer.
Then the following conditions are equivalent :

(i) X is weakly n-connected ;

(ii) X is n-connected.

18Together with the representability of algebraic K-theory we saw previously, it justifies
our choice of the Nisnevich topology

19In the Nisnevich topology of course
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The implication (ii) ⇒ (i) is clear. Let’s prove the implication (i) ⇒ (ii).
We may of course assume X is pointed.

Assume first n = 0. We must prove that the sheaf π0(X ) is the trivial
sheaf if we assume that X (F ) is connected for any finite type field extension
k ⊂ F . For a given smooth k-scheme U we must then show that the (pointed)
set π0(X )(U) is trivial. It is sufficient to show that for any morphism U →
π0(X ) there is a covering V → U such that the composition V → U → π0(X )
is trivial20.

As the morphism of simplicial sheaves X → π0(X ) is an epimorphism,
there is a covering Vα → U , with the Vα irreducible smooth k-schemes, such
that each composite Vα → U → π0(X ) lifts to a morphism Vα → X .

It is thus sufficient to prove that for any irreducible smooth k-scheme V
and any morphism φ : V → X the composition V → Xπ0(X ) is trivial.

By assumption, colimW⊂V π0(X (W )) is the trivial set, where W runs over
the ordered set of non-empty open subsets in V . This implies that there is a
dense open subset W ⊂ V such that the composition W → V → X is simpli-
cially homotopic to the trivial morphism. We may of course assume X to be
simplicially fibrant. Using the right lifting property of the projection X → ∗
with respect to simplicially trivial cofibrations, we see that our previous mor-
phism φ : V → X is simplicially homotopic to a morphism φ′ : V → X whose
restriction to W is trivial. Of course the composite V → X → π0(X ) using
φ′ is thus the same as the one using φ.

It thus remains to show that the morphism V/W → X induced by φ′

induces the trivial morphism V/W → π0(X ). This clearly follows from :

Lemma 3.3.7 For any irreducible smooth k-scheme V and any dense open
subset W ⊂ V , the A1-localization of V/U is 0-connected.

Let F be the closed complement of W with the reduced induced struc-
ture. Because k is perfect, there is an increasing sequence of reduced closed
subschemes :

∅ = F−1 ⊂ F0 ⊂ . . . Fd = F

such that each k-scheme Fs − Fs−1 is smooth and dim(Fi) = i. Then in the
increasing sequence of pointed sheaves :

∗ = (V − Fd)/W → (V − Fd−1)/W → . . . (V − F−1)/W = V/W

20Remember X is pointed so that to be trivial means to be the base point
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the homotopy cofibers21 at each step are of the form V − Fs−1/V − Fs. But
has Fs − Fs−1 is a smooth closed subscheme of V − Fs−1 of strictly positive
codimension.

To achieve the proof of Lemma 3.3.7, it thus suffices to check the following
two lemmas :

Lemma 3.3.8 Let X → Y be a closed immersion between two smooth k-
schemes. Assume that the codimension of X in Y is everywhere strictly
positive. Then LA1(Y/(Y − X)) is 0-connected.

That cofiber Y/(Y − X) is A1-homotopy equivalent to the Thom space
of the normal bundle of the immersion X → Y by Theorem 3.3.4. Using
the next lemma, we can easily reduce to the case where the normal bundle is
trivial. In which case the Thom space is (A1/A1−{0})∧(X+). But (A1/A1−
{0}) is isomorphic to the suspension of A1 − {0} whose A1-localization is 0-
connected by corollary 3.2.5.

Lemma 3.3.9 Let f : X → Y be a morphism of simplicial presheaves.
Then the A1-localization of the cone of f is canonically isomorphic to the
A1-localization of the cone of LA1(f) : LA1(X ) → LA1(Y).

We proceed now to the general case n ≥ 1. From the previous case, we
know that π0(X ) is trivial, so that X can be assumed pointed and A1-fibrant.
But now, Ωn(X ) is A1-fibrant (thus A1-local) and satisfies the hypothesis for
n = 0. This case thus implies Ωn

s (X ) is 0-connected, and thus we get the
result.�

4 Stable A
1-homotopy theory of S1-spectra

4.1 Recollection on S1-spectra

Recall that S1 denote the simplicial circle, that is to say the pointed simplicial
sheaf Δ1/∂Δ1. Here, we set Sn := (S1)∧n for any integer n ≥ 0.

21i.e. the quotients sheaves
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Definition 4.1.1 An S1-spectrum E over k is a collection {En, σn}n∈N con-
sisting, for each integer n ≥ 0, of a pointed simplicial sheaf En and a mor-
phism σn : En ∧ S1 → En+1 of pointed simplicial sheaves. Morphisms of
S1-spectra are collections of morphisms of pointed simplicial sheaves which
satisfy the obvious conditions. We thus obtain the category SpS1

(k) of S1-
spectra over k.

Example 4.1.2 1) For any pointed simplicial sheaf X , it suspension spec-
trum Σ∞(X ) has n-th term X ∧ Sn and identities as structure morphisms.
This construction gives a functor

Σ∞ : ΔopShv•(VNis) → SpS1(k)

2) Let E be an S1-spectrum in the classical sense of Bousfield-Friedlander
[7]. Then using the functor which to a set associates its constant sheaf on
V = Sm(k) on gets a functor

Sp → SpS1

(k)

Definition 4.1.3 1) Let E be an S1-spectrum. Let n ∈ Z be an integer. We
define the n-th stable homotopy sheaf of E to be the sheaf of abelian groups

πn(E) := colimr>>0πn+r(Er) ∈ Ab(VNis)

where the transition morphisms πn+r(Er) → πn+r+1(Er+1) are induced by the
structure morphisms σn.

2) A morphism of S1-spectra f : E → F is called a stable simplicial weak
equivalence if it induces an isomorphism

πn(E) ∼= πn(F )

for all integer n ∈ Z.

3) A morphism of S1-spectra f : E → F is called a stable cofibration if
and only if the morphisms

E0 → F0

and for each n ≥ 0

En+1 �En∧S1 Fn ∧ S1 → Fn+1

are cofibrations (i.e. monomorphisms of pointed simplicial sheaves).
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Using the results of [25] and standard techniques cf [7, 15], one can show
that the category of S1-spectra endowed with the notions of stable simplicial
weak equivalences as weak equivalences and of stable cofibrations as cofibra-
tions is a model category, which we will refer to as the stable model category
structure. We denote by SHS1

s (k) the associated homotopy category. The
set of morphism in that category between E and F will be denoted

[E, F ]S
1

s

The stable fibrations are not easy to describe (see [7]) but one has

Lemma 4.1.4 An S1-spectrum E is stably fibrant if and only if for each
n ≥ 0 En is a fibrant pointed simplicial sheaf and the adjoint to σn :

σ̃n : En → Hom•(S
1, En+1) = Ω(En+1)

is a weak equivalence (of pointed simplicial sheaves).

Example 4.1.5 The functor Sp → SpS1
(k) considered above sends a (clas-

sical) stable weak equivalence to a stable simplicial weak equivalence so that
we get an induced functor SH → SHS1

s (k).

The functor

Σ∞ :

{
ΔopShv•(VNis) → SpS1

(k)
X 	→ Σ∞(X )

clearly sends simplicial weak equivalences to stable simplicial weak equiva-
lences and thus induces a functor :

Σ∞ :

{ H•(k) → SHS1

s (k)
X 	→ Σ∞(X )

That functor admits as right adjoint the functor

Ω∞ :

{ SHS1

s (k) → H•(k)
E 	→ Ω∞(E)

which to a simplicially fibrant S1-spectrum E associates its infinite loop space

Ω∞(E) := colimr≥0Hom•(S
r, Er)

Recall from that the suspension functor Hs,•(VNis) → Hs,•(VNis),X 	→
X ∧ S1 has a right adjoint which we denoted by

Ω1 : Hs,•(VNis) → Hs,•(VNis),Y 	→ Ω(Y)

39



Definition 4.1.6 A S1-spectrum E is said to be an Ω-spectrum if and only
if for any n ≥ 0 the adjoint En → Ω1(En+1) to the structural morphism σn

is a simplicial weak equivalence.

Thus, in particular such a stable fibrant spectrum E is an Ω-spectrum,
and any S1-spectrum admits a stable trivial cofibration E → Ef to such a
stably fibrant spectrum.

Corollary 4.1.7 Let E be a fibrant S1-spectrum. For any smooth k-scheme
U the canonical map HomSHS1

s (k)
(Σ∞(U+), E) → HomH•(k)(U, E0) is bijec-

tive.

Indeed, one applies the principle of Quillen homotopical algebra, observ-
ing that the infinite suspension spectra Σ∞(U+) is stably cofibrant.

Corollary 4.1.8 Let E be an S1-spectrum. Then the sheaf π0(E) is the
associated sheaf to the presheaf

U 	→ HomSHS1
s (k)

(Σ∞(U+), E)

One easily proves that corollary from the previous one by assuming that
E is a stably fibrant S1-spectrum.

Let E be an S1-spectrum and X be a pointed simplicial sheaf. One defines
the smash-product X ∧E as the S1-spectrum whose n-th term is X ∧En and
with structure morphisms X ∧ σ(E)n. This functor induces a functor

ΔopShv•(VNis) × SpS1

(k) → SpS1

(k), (X , E) 	→ X ∧ E

which preserves weak equivalences and thus induces a functor

Hs,•(VNis) × SHS1

s (k) → SHS1

s (k)

We can also define the smash-product on the right

SpS1

(k) × ΔopShv•(VNis) → SpS1

(k), (E,X ) 	→ E ∧ X
with terms En ∧ X , but of course this functor is canonically isomorphic to
the previous one. We observe also that the smash product by some fixed
X ∈ ΔopShv•(VNis)

SpS1

(k) → SpS1

(k), E 	→ E ∧ X
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admits a right adjoint

SpS1

(k) → SpS1

(k), F 	→ Hom(X , F )

Given a functorial stable fibrant resolution E 	→ Ef the functor

SHS1

s (k) → SHS1

s (k), F 	→ RHom(X , F ) := Hom(X , Ff)

is easily seen to be a right adjoint to

SHS1

s (k) → SHS1

s (k), E 	→ E ∧ X

The triangulated structure on SHS1

s (k) The category SHS1

s (k) admits
arbitrary sums : the sum of a family of S1-spectra is the S1-spectrum whose
n-th term is the wedge of the n-terms in that family.

Lemma 4.1.9 The smash-product by S1

SHS1

s (k) → SHS1

s (k), E 	→ S1 ∧ E

is an equivalence of categories.

Indeed, choose a functorial stable fibrant resolution

E 	→ Ef

Then the functor E 	→ Ω(Ef ), where Ω(Ef )n := Ω((Ef )n) is easily seen to
be an inverse to E 	→ S1 ∧ E using the two stable weak equivalences22

E → Ω((S1 ∧ E)f)

and
S1 ∧ Ω(Ef ) → Ef

As S1 is a cogroup object in Hs,•, its codiagonal φ : S1 → S1∨S1 induces
for any spectrum E, a morphism E → E∨E (induced by φ∧IdE : S1∧E →
S1 ∧ E ∨ S1 ∧E using the above lemma), which induces a natural structure
of cogroup object on E. Being natural in E, this structure has to be abelian.
Thus the category SHS1

s (k) is additive.

22Check it on each fibers
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In fact, it extends to a natural triangulated structure on SHS1

s (k) where
the shift functor E 	→ E[1] is E 	→ S1∧E and where an exact triangle in that
structure is one which is isomorphic to some shift of the following triangle :

E → F → Cone(f) → S1 ∧ E

where f : E → F is any morphism of S1-spectra and Cone(f)n := Cone(fn).

Remark 4.1.10 The triangulated category SHS1

s (k) is generated by spectra

of the form Σ∞(U+) with U ∈ V in the sense that E ∈ SHS1

s (k) is trivial if

and only if any morphism (in SHS1

s (k)) from any shift of those spectra to E
is trivial.

Example 4.1.11 For each distinguished triangle as in 2.1.4 the following
triangle

Σ∞(W+) → Σ∞(U+) ∨ Σ∞(V+) → Σ∞(X+) → Σ∞(W+)[1]

where the first morphism is the difference of the two obvious morphisms and
where the second one is the sum of the two obvious morphisms.

Example 4.1.12 From Theorem 3.3.4 it follows that for any closed immer-
sion i : X → Y in V with normal bundle νi and open complement U ⊂ Y
there is an exact triangle

Σ∞(U+) → Σ∞(Y+) → Σ∞(Th(νi)) → Σ∞(U+)[1]

Remark 4.1.13 Following [28, 14] the category SHS1

s (k) admits in fact a
structure of symmetric monoidal category whose monoidal structure

(−) ∧ (−) : SHS1

s (k) × SHS1

s (k) → SHS1

s (k)

(E, F ) 	→ E ∧ F

is induced by the smash product in the sense that the composition of the
functor ∧ : SHS1

s (k) × SHS1

s (k) → SHS1

s (k) by the functor Σ∞ × Id :

Hs,•(VNis) × SHS1

s (k) → SHS1

s (k) is the functor already considered above.
That symmetric monoidal structure is compatible in the obvious sense

with triangulated structure. Moreover it complete in the sense that for any
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S1-spectrum F , the smash-product by F , SHS1

s (k) → SHS1

s (k), E 	→ E ∧ F
has a right adjoint denoted by :

Hom(F,−) : SHS1

s (k) → SHS1

s (k), G 	→ Hom(F, G)

and for a pointed simplicial sheaf X one has of course a canonical isomor-
phism

Hom(Σ∞(X ), G) ∼= Hom(X , G)

The t-structure on SHS1

s (k)

Definition 4.1.14 A S1-spectrum E is said to be non negative if and only
if for any integer n < 0 one has

πn(E) = 0

We denote SHS1

s (k)≥0 ⊂ SHS1

s (k) the full subcategory whose objects are non-
negative. We say that E is non positive if for any integer n > 0 one has

πn(E) = 0

We denote SHS1

s (k)≤0 ⊂ SHS1

s (k) the full subcategory whose objects are non
positive.

Lemma 4.1.15 An S1-spectrum F is non positive if and only if for any
n > 0 and U ∈ Sm(k) the group

[Σ∞(U+)[n], F ]S
1

s

vanishes.

This easily follows from Corollary 4.1.8.

Example 4.1.16 Spectra of the form Σ∞(U+)[n] = Sn ∧ Σ∞(U+), n ≥ 0
and U ∈ Sm(k) are obviously non negative. This comes from the obvious
fact that the simplicial pointed sheaf (U+) ∧ Sn is (n − 1)-connected.

Theorem 4.1.17 The triple

(SHS1

s (k),SHS1

s (k)≥0,SHS1

s (k)≤0)

is a t-structure23 [6] on SHS1

s (k).

23Here we are using an homological indexation of t-structures: thus our SHS1

s (k)≥0

should be understood as SHS1

s (k)≤0 in [6], etc...
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We will not recall the definition of a t-structure but we just remind the
reader that the inclusion SHS1

s (VNis)≥0 ⊂ SHS1

s (k) has a left adjoint E 	→
E≥0 that the inclusion SHS1

s (k)≤0 ⊂ SHS1

s (k) has a right adjoint denoted by
E 	→ E≤0, that

∀E ∈ SHS1

s (k)≥0, ∀F ∈ SHS1

s (k)≤0, [E[1], F ]S
1

s = 0

and that for any spectrum E there is a unique exact triangle

E≥0 → E → E≤(−1) → E≥0[1]

Once one has such a t-structure, one easily gets for each integer n ∈ Z a
≥ n truncation E≥n → E (with E≥n = (E[−n])≥0[n]), a ≤ n truncation
E → E≤n so that there is an exact triangle

E≥n → E → E≤(n−1) → E≥n[1]

The tower {E≤n}n∈Z is usually refereed to as the “Postnikov” tower for E.
This t-structure is “non-degenerate” in the sense that for any U ∈ V and

for any E ∈ SHS1

s (k), the morphism :

[Σ∞(U+), E≥n]S
1

s → [Σ∞(U+), E]S
1

s

is an isomorphism for n < 0 and the group :

[Σ∞(U+), E≥n]S
1

s

vanishes24 for n > dim(U). As a consequence the morphism :

[Σ∞(U+), E]S
1

s → [Σ∞(U+), E≤n]S
1

s

is an isomorphism for n ≥ dim(U).

The functor SHS1

s (k) → Ab(VNis), E 	→ π0(E) clearly induces an equiv-
alence of categories from the heart25 of that t-structure with the category
Ab(VNis) of sheaves of abelian groups. The inverse functor is the functor

H : Ab(VNis) → SHS1

s (k)

24this follows from the fact that the Nisnevich cohomological dimension is bounded by
the Krull dimension [36, 25]

25The heart of a t-structure is the full subcategory consisting of objects both non-
negative and non-positive. By [6] it is always an abelian category
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which sends M to the following S1-spectrum HM : its n-th term is the
simplicial sheaf (of abelian groups) K(M, n) which has only one non-trivial
homotopy sheaf isomorphic to M in degree n, and whose structure morphisms
are the obvious morphisms.

4.2 A1-localization of S1-spectra and the connectivity
theorem

In the sequel, when we consider A1 as a pointed scheme, we will always
consider 0 as the base point and for any spectrum E, we denote by ev1(E)
the evaluation at one :

Hom(A1, E) → E

Proposition 4.2.1 Let E be an S1-spectrum. The following conditions are
equivalent :

(i) for any X ∈ SpS1
(k), the projection

X ∧ Σ∞(A1
+) → X ∧ Σ∞(Spec(k)+) = X

induces a bijection :

[X, E]S
1

s → [X ∧ Σ∞(A1
+), E]S

1

s

(ii) for any X ∈ SpS1
(k), the group

[X ∧ Σ∞(A1), E]S
1

s

vanishes ;

(iii) the S1-spectrum
Hom(A1, E)

is trivial ;

(iv) for any smooth k-scheme U , any integer n ∈ Z, the group homomor-
phism induced by ev1(E) :

[Σ∞(U+)[n], Hom(A1, E)]S
1

s → [Σ∞(U+)[n], E]S
1

s

is trivial.

Assume moreover that E is an Ω-spectrum. Then the previous condi-
tions are also equivalent to the following one :
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(v) each of the pointed simplicial sheaves En is A1-local.

The proof is of course the same as the proof of lemma 3.2.1.

Definition 4.2.2 1) An S1-spectrum E is called A1-local if it satisfies the
equivalent conditions of the proposition.

2) A morphism f : X → Y in SpS1
(k) is called a stable A1-weak equiva-

lence if and only if for any A1-local E, the map :

[Y, E]S
1

s → [X, E]S
1

s

is bijective.

It is possible to show that the notion of stable A
1-weak equivalences,

and of stable cofibrations define a model category structure on SpS1
(k). We

denote by
SHS1

(k)

the associated homotopy category and call it the stable A1-homotopy category
of S1-spectra. As any stable weak equivalence is an stable A1-weak equiva-
lence, the category SHS1

(k) is a localization of SHS1

s (k) and thus get most
of its structures26. Given two S1-spectra E and F , we will simply denote by

[E, F ]S
1

the abelian group of morphisms between E and F in SHS1
(k).

Remark 4.2.3 The triangulated category SHS1
(k) is generated by spectra

of the form Σ∞(U+) with U ∈ Sm(k). This follows from the fact that these
spectra generate27 the triangulated category SHS1

s (k) and by the fact that the
right adjoint to the obvious functor SHS1

s (k) → SHS1
(k) is a full embedding.

Let F 	→ Ff be a functorial (simplicial) fibrant model for Y . Let E be an
S1-spectrum. We let L(1)(E) be the cone of the obvious morphism

ev1 : Hom(A1, Ef) → Ef

26Triangulated, symmetric monoidal,etc..
27see 4.1.10
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Let L
(1)
f (E) be L(1)(E)f . We let E → L

(1)
f (E) be the obvious morphism of

pointed simplicial sheaves. Define by induction on n ≥ 0, L(n) := L
(1)
f ◦L(n−1)

f .

We have natural morphisms, for any E, L
(n−1)
f (E) → L

(n)
f (E) and we set

L∞(E) = colimn∈NL
(n)
f (E).

Lemma 4.2.4 Let E be an S1-spectrum. Then the S1-spectrum L∞(E) is
A1-local and the morphism

E → L∞(E)

is a stable A1-weak equivalence.

The proof is the same as the one of 3.2.3.

Let’s denote by SHS1

s,A1(k) ⊂ SHS1

s (k) the full subcategory consisting of

A1-local S1-spectra. We observe it is stable under the operation of taking
cones and as such is a sub-triangulated category.

The inclusion SHS1

s,A1(k) ⊂ SHS1

s (k) thus admits as left adjoint the func-

tor L∞(−) : SHS1

s (k) → SHS1

s,A1(k), which is called the A
1-localization func-

tor. It sends stable A
1-weak equivalences to isomorphisms, and thus induces

a functor SHS1
(k) → SHS1

s,A1(k) which is an equivalence of categories.

Definition 4.2.5 Let E be an S1-spectrum and n ∈ Z an integer. We say
that E is weakly n-connected if and only if for any i ≤ n

πi(E)(F ) = 0

for any field of rational functions F of any irreducible smooth k-scheme28.

For instance, any n-connected S1-spectrum is weakly n-connected.

Remark 4.2.6 If E is an Ω-spectrum, its is weakly n-connected if and only
if for each m ≥ 0 the simplicial sheaf Em is weakly n + m-connected.

Lemma 4.2.7 Let E be an A1-local S1-spectrum and n ∈ Z an integer. Then
the following conditions are equivalent :

(i) E is weakly n-connected ;

(ii) E is n-connected.

28or equivalently the fiber E(F ) at such an F is an n-connected spectrum
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This easily follows from 3.3.6 and 4.2.1 (v).

Corollary 4.2.8 Let f : E → F be a morphism of A
1-local S1-spectra. As-

sume that f induces an isomorphism on the sections over any field extension
of finite type of k. Then f is a stable weak equivalence.

Just apply Lemma 4.2.7 to the cone of f (which is A1-local and weakly
n-connected for any integer n).

The following, now, is the main result of this section :

Theorem 4.2.9 Let n ∈ Z and let E be an n-connected S1-spectrum. Then
its A

1-localization LA1(E) is weakly n-connected.

Combining Theorem 4.2.9 and Lemma 4.2.7 we immediately get :

Theorem 4.2.10 Let n ∈ Z an integer and let E be an n-connected S1-
spectrum. Then its A

1-localization LA1(E) is still n-connected.

Remark 4.2.11 This theorem is the stable version of our conjecture 2.

Sketched proof of theorem 4.2.9 By Lemma 4.2.7 and an appropriate
“base change argument”29 we are reduced to proving the following

Lemma 4.2.12 Let k be a field. Let n ∈ Z and let E be a (−1)-connected
S1-spectrum over k. Then for any integer n < 0 the group

HomSHS1
s (k)(S

n, LA1(E))

is trivial.

To prove this lemma let us denote by σ the S1-spectrum which is the
fiber of the obvious morphism (corresponding to 1 ∈ A1) S0 → Σ∞(A1)) so
that we have an exact triangle

σ → S0 → Σ∞(A1) → σ[1]

29In the following statement, the fact that the base field is perfect is NOT necessary
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Clearly, for any S1-spectrum E one has a triangle of the form :

Hom(A1, E) → E → Hom(σ, E)

so that the function spectrum Hom(σ, E) is isomorphic to L
(1)
f (E) in the

category SHS1

s (k). Iterating this remark, we see that, for any integer n ≥ 0,

the function spectrum Hom(σ∧n, E) is isomorphic in SHS1

s (k) to L
(n)
f (E). So

that the A
1-localization of E is isomorphic to the telescope of the diagram :

E → Hom(σ, E) → . . . → Hom(σ∧n, E) → . . .

As the spectra Sn are finitely presented30, any morphism

Sn → LA1(E)

factors through some Hom(σ∧n, E) → LA1(E).

Now the Lemma 4.2.12 and thus the Theorem 4.2.9 is a consequence of31 :

Lemma 4.2.13 Let k be a field. Let m < 0 be an integer and let E be a
−1-connected S1-spectrum over k. Then for any integer n ≥ 0 the group

[Sm, Hom(σ∧n, E)]S
1

s
∼= [σ∧n, E[−m]]S

1

s

is trivial.

This lemma can be reformulated by saying that for any n ≥ 0 the S1-
spectrum σ∧n has cohomological dimension 0 in the sense that for any 0-
connected S1-spectrum E the group

[σn, E]S
1

s

is trivial. In fact we prove by induction on n ≥ 0 that for any i ∈ N the
spectrum (Σ∞(A1)[−1])∧i ∧ σ∧n is of cohomological dimension 0, that is to
say that for any 0-connected S1-spectrum E the group

[(Σ∞(A1)[−1])∧i ∧ σ∧n, E]S
1

s

30or “compact”
31the following Lemma is a reformulation of an idea of Voevodsky [39]
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is trivial. This is true for n = 0 because Ai is a smooth variety of Krull
dimension i and that the Nisnevich dimension is less or equal to the Krull
dimension [26, 36, 25]. Assume the inductive hypothesis for n−1, with n > 0.
Let i ∈ N. Using the triangle which defines σ we get a triangle

(Σ∞(A1)[−1])∧i(+1) ∧ σ∧(n−1) → (Σ∞(A1)[−1])∧i ∧ σ∧n

→ (Σ∞(A1)[−1])∧i ∧ σ∧(n−1)

which easily implies the result.

4.3 The homotopy t-structure on SHS1

(k)

Definition 4.3.1 1) An S1-spectrum F is said to be A1-non positive if and
only if for any integer n > 0, any smooth k-scheme U the group

[Σ∞(U+)[n], F ]S
1

is trivial. We denote by SHS1

≤0(k) ⊂ SHS1
(k) the full subcategory whose ob-

jects are A
1-non positive.

2) We say that an S1-spectrum E is A1-non negative if for any F ∈
SHS1

≤0(k) one has
[E, F [−1]] = 0

We denote SHS1

≥0(k) ⊂ SHS1
(k) the full subcategory whose objects are A1-non

negative.

Example 4.3.2 Spectra of the form Σ∞(U+)[n], with n ≥ 0 and U ∈ Sm(k)
are obviously A1-non negative.

Lemma 4.3.3 1) An S1-spectrum F is A1-non positive if and only its A1-
localization LA1(F ) is non positive.

2) An S1-spectrum E is A1-non negative if and only its A1-localization
LA1(E) is non positive.

The first part follows from the fact that, for any integer n, any smooth
k-scheme U one has an isomorphism

[Σ∞(U+)[n], F ]S
1 ∼= [Σ∞(U+)[n], LA1(F )]S

1

s

The second part is an immediate consequence of the first.
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Theorem 4.3.4 1) Let E is an A1-local S1-spectrum, then its non negative
part

E≥0

is still an A1-local S1-spectrum. As a consequence, the triangle32 of S1-spectra

E≥0 → E → E≤−1

consists of A1-local S1-spectra.

2) The pair (SHS1

≥0(k),SHS1

≤0(k)) is a t-structure [6] on SHS1
(k).

This t-structure on SHS1
(k) is called the homotopy t-structure33.

To prove 1) apply the A
1-localization functor to E≥0. By theorem 4.2.10,

the S1-spectrum LA1(E≥0) is still −1-connected. By functoriality, LA1(E≥0)
maps into LA1(E) = E because E is A1-local. By the universal property of
the non-negative part E≥0, we thus get a canonical factorization

LA1(E≥0) → E≥0 → E

whose composition by the morphism E≥0 → LA1(E≥0) is clearly the canonical
one. Thus, E≥0 is a direct summand in LA1(E≥0) and is also A

1-local.
The second part follows easily from the first.�

It follows from the corresponding fact in SHS1

s (k) that this is non-degene-

rate in the sense that for any U ∈ V and for any E ∈ SHS1

s (k), the morphism :

[Σ∞(U+), E≥n]S
1 → [Σ∞(U+), E]S

1

is an isomorphism for n < 0 and the group :

[Σ∞(U+), E≥n]S
1

s

vanishes for n > dim(U). As a consequence the morphism :

[Σ∞(U+), E]S
1

s → [Σ∞(U+), E≤n]S
1

s

is an isomorphism for n ≥ dim(U).

32in SHS1

s (k)
33It is compatible to the homotopy t-structure defined by Voevodsky on DMeff (k) [38],

see also the discussion in section 5.3
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The heart of the homotopy t-structure The heart34 of that t-structure
is denoted πA1

(k). Using theorem 4.3.4, we see that the obvious functor

πA1

(k) → SHS1

s,≥0(k) ∩ SHS1

s,≤0(k)

is an exact full embedding.

As we already know that SHS1

s,≥0(k)∩SHS1

s,≤0(k) is canonically equivalent
to Ab(VNis) by the functor which maps E to the associated sheaf to the
presheaf

U 	→ [Σ∞(U+), E]S
1

s

thus it remains us to identifies πA1
(k) as a subcategory of Ab(VNis).

We first extend definition 3.2.9:

Definition 4.3.5 We say that a sheaf of abelian groups M ∈ Ab(VNis) is
strictly A1-invariant if and only if for any smooth k-scheme U , the homo-
morphism

Hn
Nis(U ; M) → Hn

Nis(U × A
1; M)

is an isomorphism.
We denote by AbstA1(VNis) the full subcategory of Ab(VNis) consisting of

strictly A1-invariant sheaves.

This a quite natural because of the following

Lemma 4.3.6 Given a sheaf of abelian groups M ∈ Ab(VNis), the S1-
spectrum HM is A1-local is and only if M is strictly A1-invariant.

This Lemma immediately follows from remark 3.2.8.

Lemma 4.3.7 1) For any S1-spectrum E the associated (Nisnevich) sheaf
to the presheaf

U 	→ [Σ∞(U+), E]S
1

= [Σ∞(U+), LA1(E)]S
1

s

is a strictly A1-invariant sheaf which we denote πA1

0 (E).

34recall it is just SHS1

≥0(k) ∩ SHS1

≤0(k)
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2) The functor

πA1

0 : SHS1

(k) ⊂ AbstA1(VNis), E 	→ πA1

0 (E)

induces an equivalence of categories

πA1

(k) ∼= AbstA1(VNis)

Indeed, if E is ≥ 1, the associated sheaf is trivial, and so ti is if E
is ≤ (−1). Using our homotopy t-structure, we thus reduce to the case
E = HM which follows from Lemma 4.3.6.

Remark 4.3.8 As a consequence the category AbstA1(VNis) is abelian and
the inclusion AbstA1(VNis) ⊂ Ab(VNis) admits as left adjoint the functor
denoted M 	→ MA1

st which maps M to πA1

0 (HM). It also gets a sym-
metric monoidal structure by the formula (for M and N in the category
AbstA1(VNis))

M ⊗A1

N := (M ⊗ N)A1

st

Remark 4.3.9 Given any S1-spectrum E, its Postnikov tower in SHS1
(k)

gives for any X ∈ Sm(k) a spectral sequence of the form

Hp
Nis(X; πA1

−q(E)) ⇒ [Σ∞(X+), E[p + q]]S
1

The Quillen-Gersten spectral sequence [31, 8] can be seen to be a particular
example of such a spectral sequence, applied to the S1 spectrum K with n-th
term

Gr ∧ Gm
∧n

and with structure morphisms induced by the Bott map 3.1.7 and 3.1.11.
This spectrum represents algebraic K-theory in the sense that for any X ∈
Sm(k) and any integer n ∈ Z one has a canonical isomorphism

KQ
n (X) ∼= [Σ∞(X+)[n], K]S

1

and one can indeed show that the sheaves πA1

q (K) are the usual ones Kq

appearing in Quillen-Gersten spectral sequence.
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Homotopy groups of Hom(Gm, E)

Definition 4.3.10 Let F : Sm(k)op → Set• be a presheaf of pointed sets.
Denote by F−1 : Sm(k)op → Set• the presheaf of sets which maps U ∈
Sm(k) to the kernel (in the category of pointed sets) of the evaluation at 1 :
F (U × Gm) → F (U).

We observe that if F is a sheaf of pointed sets so is F−1 and in fact F−1

is the internal pointed function sheaf : Hom•(Gm, F ).
Let E be an S1-spectrum. The obvious natural transformation (in U ∈

Sm(k)) :

[Σ∞(U+) ∧ Σ∞(Gm), E]S
1

s ∧ HomShv(VNis)(U,Gm) → π0(E)(U)

induces a morphism of sheaves of pointed sets

π0(Hom(Gm, E) ∧ Gm → π0(E)

and thus a morphism of sheaves of abelian groups

π0(Hom(Gm, E) → π0(E)−1

More generally, for any integer n ∈ Z the above construction yields a canon-
ical morphism

πn(Hom(Gm, E) → πn(E)−1

Lemma 4.3.11 Let E ∈ SpS1
(k) be an A1-local S1-spectrum. Then for any

n ∈ Z, the canonical morphism of

πn(Hom(Gm, E)) → πn(E)−1

is an isomorphism.

Remark 4.3.12 As a consequence, we observe that if E ∈ π(k) is an A1-
local S1-spectrum which is in the heart of the homotopy t-structure on
SHS1

(k), then the function spectrum Hom(Gm, E) is still in the heart. More
precisely, if E = HM then Hom(Gm, HM) ∼= H(M−1).

It is clear that to prove the lemma, it is sufficient to establish the formula
in the previous remark, that is to say that for any M ∈ AbstA1(VNis) the
obvious morphism of S1-spectra :

Hom(Gm, HM) → H(M−1)
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is an isomorphism. To do this it is sufficient by corollary 4.2.8 to check it on
fields, and by a base change argument to check that this morphism induces
an isomorphism for each n ∈ Z :

[S0, Hom(Gm, HM)[n]]S
1

s → [S0, H(M−1)[n]]S
1

s

which can be reformulated, using adjunction, as :

1) [Σ∞(Gm, HM)[n]]S
1

s = 0 for n �= 0.

2) [Σ∞(Gm, HM)]S
1

s → [S0, H(M−1)]
S1

s .

The second point is obvious by definition. To prove the first one35 one
simply observes that Σ∞(Gm) ∼= Σ∞(P1)[−1], that for any smooth variety
X the group [Σ∞(X+), HM [n])]S

1

s is canonically isomorphic to Hn
Nis(X, M)

and that P1 has cohomological dimension ≤ 1.

5 Stable A
1-homotopy theory of P

1-spectra

5.1 P
1-spectra

Definition 5.1.1 A P1-spectrum E over k is a collection {En, σn}n∈N con-
sisting, for each integer n ≥ 0, of a pointed simplicial sheaf En and a mor-
phism σn : En ∧ P1 → En+1. Morphisms of P1-spectra are collections of
morphisms of pointed simplicial sheaves with the obvious conditions. We
thus obtain the category SpP1

(k) of P1-spectra (over k).

Example 5.1.2 1) The basic example is the suspension spectrum Σ∞
P1(X )

of a pointed simplicial sheaf X . Its n-th term is X ∧ P1∧n
and the structure

morphisms are just the canonical isomorphisms.

2) We may define a P1-spectrum K with n-th term Z × Gr and with σn

equal to the Bott map (see 3.1.11)

(Z × Gr) ∧ P
1 → Z × Gr

This P1-spectrum is called the algebraic K-theory spectrum.

35I learned this simple argument from Mike Hopkins

55



3) T -spectra. Recall from [25, 39] that T := A1/A1 − {0} is the Thom
space of the trivial line bundle on Spec(k). The cocartesian square (of sheaves
of sets)

Gm → A1

↓ ↓
A1 → P1

defines a canonical isomorphism P1/A1 ∼= T which is by the way an A1-weak
equivalence.

A T -spectrum E over k is a collection {En, σn}n∈N consisting, for each in-
teger n ≥ 0, of a pointed simplicial sheaf En and a morphism σn : En ∧ T →
En+1. Using the previous morphism P1 → T one see that any T -spectrum
defines a P1-spectrum.

4) The Thom spectrum MGl has n-th term the Thom space Th(γn) of the
canonical rank n vector bundle on the infinite grassmanian Grn =

⋃
r Grn,r

of n-dimensional plans in the infinite affine space.
The morphism

Grn × Grm → Grn+m

“classifying” the external sum pr∗1γn�pr∗2γm induces with the isomorphism
of Thom spaces given in 3.3.2 a morphism

Th(γn) ∧ Th(γm) → Th(γn+m)

These morphisms and the obvious map T = Th(O) → Th(γ1) corresponding
to the Thom space of the trivial line bundle over the point 0 ∈ P∞ allows
one to define a T -spectrum (and thus a P1-spectrum) with n-th term Th(γn),
denoted by MGl and called the Thom spectrum or the P1-spectrum of alge-
braic cobordism.

5) The motivic cohomology spectrum [39, 40] H has n-th term Kn :=
L[An]/L[An −{0}] where the quotient is computed in the category Ab(VNis)
and where, for X ∈ Sm(k) the motivic Eilenberg-MacLane “space” L[X] is
the sheaf of abelian groups U 	→ c(U, X) where c(U, X) denotes the group of
finite correspondences from U to X (see [38, 21]).

Remark 5.1.3 We will usually just use the term “spectrum” to mean P1-
spectrum. Also, we will simply denote Sp(k) the category of P1-spectrum if
there is no possible confusion.
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Let E be a P1-spectrum, U ∈ Sm(k) and (n, m) ∈ (Z)2. We set

π̃n(E)m(U) := colimr>>0HomH•(k)(S
n+m ∧ (U+) ∧ (P1)r−m, Er)

This pointed set has a canonical structure of abelian group because P
1 is

isomorphic to S1 ∧ Gm in H•(k).

Definition 5.1.4 1) A morphism f : E → F of P1-spectra is called an
A1-stable weak equivalence if and only if for any U ∈ Sm(k) and any pair
(n, m) ∈ (Z)2 the homomorphism :

π̃n(E)n(U) → π̃n(F )m(U)

is an isomorphism.

2) A morphism f : E → F of P1-spectra is called a cofibration if and only
if the morphism of pointed simplicial sheaves E0 → F0 is a cofibration and if
for any n ≥ 0, the morphism pointed simplicial sheaves

En+1 ∨(En∧P1) (Fn ∧ P
1) → Fn+1

is a cofibration.

One can show that the category of P1-spectra endowed with the notions
of stable A1-weak equivalences and of morphisms which are at each level
monomorphisms as cofibrations is a model category. We denote by SHP1

(k)
the associated homotopy category, and call it the stable homotopy category
of P1-spectra. The morphisms in that category are denoted as usual by
[E, F ]P

1
.

In fact, if no confusion can arise, we will usually denote the previous
category simply by SH(k), will call it the stable homotopy category of smooth
k-schemes and will simply denote the morphisms by

[E, F ]

This category is naturally a triangulated category36 and the suspension
spectrum functor induces a functor

Σ∞
P1 : H•(k) → SH(k)

36like for the case of S1-spectra, this follows from the fact that P1 is a suspension in
H•(k)
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In fact there is an obvious extension of that functor to a smash-product
functor

SH(k) ×H•(k) → SH(k), (E,X ) 	→ E ∧ X
The unit for that functor is the sphere spectrum

S0 := Σ∞
P1(S0)

Remark 5.1.5 As in the case of S1-spectra [15, 28] show that the previous
functor extends to a symmetric monoidal structure induced by the smash-
product, which is compatible with the triangulated structure.

Of course, almost by construction, the smash product by P1

SH(k) → SH(k), E 	→ E ∧ P
1

is an equivalence of categories, so that P1 is invertible.
The isomorphism37(in H•(k)) P1 ∼= S1 ∧ Gm shows that in SH(k), the

spectra S1,0 := Σ∞(S1) and S1,1 := Σ(Gm) are both invertible as well.
Moreover for any pair (n, i) ∈ Z2 we set

Sn,i := (S1,0)∧n ∧ (S1,1)∧(i−n)

Observe that S2,1 is isomorphic to Σ∞(P1).

Definition 5.1.6 For any spectrum E, and for any integers n, i ∈ Z set

E(i)[n] := E ∧ Sn,i

For any X ∈ ΔopShv•(VNis), set

Ẽn,i(X ) := [Σ∞(X ), E(i)[n]]

For any X ∈ ΔopShv(VNis), set

En,i(X ) := [Σ∞(X+), E(i)[n]] ∼= Ẽn,i(X+)

The functor ΔopShv(VNis) → Ab∗,∗, X 	→ E∗,∗(X ), where Ab∗,∗ denotes the
category of bigraded abelian groups, is called the cohomology theory on the
category of simplicial smooth k-schemes associated to E.

37cf 3.1.10
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Example 5.1.7 1) The cohomology theory associated with the Algebraic
K-theory spectrum

X 	→ K
∗,∗(X)

is (2, 1)-periodic because, by construction, the Bott morphism induces an
isomorphism

K ∧ P
1 ∼= K

But by Bott periodicity 3.1.11, this gives isomorphisms for any X ∈ Sm(k)
any (n, i) ∈ Z2

K
n,i(X) ∼= KQ

2i−n(X)

2) The cohomology groups

H
n,i(X)

associated with the motivic cohomology spectrum are the Suslin-Voevodsky
motivic cohomology groups Hn(X; Z(i)) [38, 39, 35] of X ∈ Sm(k) with
integral coefficients.

Example 5.1.8 One can easily show that for any P1-spectrum E and any
integers (n, m) ∈ Z

2 the presheaf π̃n(E)m defined above is in fact isomorphic
to the presheaf

U 	→ [Σ∞
P1(U+) ∧ Sn ∧ Gm

∧(−m), E] ∼= [Σ∞
P1(U+)[n], E ∧ ∧Gm

∧m]

∼= [Σ∞
P1(U+)[n], E(m)[m]]

This fact explains, a posteriori, the definition we gave of stable A1-weak
equivalence and shows that the spectra Σ∞

P1(U+) ∧ Gm
∧m, m ∈ Z (in fact

m ≤ 0 suffices) are generators of the triangulated category SH(k).

Remark 5.1.9 Let Sm′(k) ⊂ Shv(V) denote the full subcategory consisting
of sheaves which are (categorical) sums of smooth k-varieties38. From [25]
we know that there is a functorial weak equivalence

X 	→ (X ′ → X )

with X ′ ∈ ΔopSm′(k). This implies formally that the categories Hs(VNis)
and H(k) are localizations of ΔopSm′(k).

38Sm′(k) is thus also equivalent to the category of k-schemes which are disjoint unions
of finite type smooth k-schemes
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It is then possible to write down a list of axioms on functors

(ΔopSm′(k))op → Ab∗,∗

which characterizes those of the form E∗,∗(−) for E ∈ SH(k) as in classical
topology.

Remark 5.1.10 As it clear from the definition previously given, for any
pointed simplicial sheaf S one can define the category SpS(k) of S-spectra
over k, the corresponding presheaves for (n, m) ∈ Z2

U 	→ π̃S

m(E)n(U) := colimr>>0HomH•(k)(S
n ∧ (U+) ∧ (S)r−m, Er)

and thus the corresponding notion of stable A1-weak equivalences of S-spectra
and thus the stable A

1-homotopy category SHS(k). Using [15] one sees that
when S is “reasonable”, i.e.:

1)S is of finite presentation (or “compact” in [15]);
2) S is isomorphic in H•(k) to a suspension;
3) the cyclic permutation on the three variables

γ : S ∧ S ∧ S ∼= S ∧ S ∧ S

is the identity morphism in H•(k);
then SHS(k) gets in a natural way a structure of triangulated, symmetric

monoidal category in which the suspension S-spectrum of S is invertible.

Moreover, it is clear that a morphism39
S
′ → S induces a triangulated

monoidal functor
SHS′

(k) → SHS(k)

which is an equivalence of categories if S′ → S is an A1-weak equivalence.

Finally, given two reasonable such objects S and S the smash-product by
S′ defines a canonical triangulated and symmetric monoidal functor

σS′
: SHS(k) → SHS∧S′

(k)

We have in mind the following examples:

39in H•(k)
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1) The canonical isomorphisms P1 ∼= T := A1/A1 −{0} ∼= S1∧Gm giving
equivalences

SHP1

(k) ∼= SHT (k) ∼= SHS1∧Gm(k)

2) The canonical functor thus induced by the smash-product by Gm

σGm : SHS1

(k) → SHS1∧Gm(k) ∼= SHT (k) ∼= SHP1

(k)

Remark 5.1.11 We observe that the previous functor σGm admits a right
adjoint

ωGm : SHS1∧Gm(k) ∼= SHT (k) ∼= SHP1

(k) → SHS1

(k)

As a consequence, using 5.1.8, for any P1-spectrum E and any integers
(n, m) ∈ Z2 the presheaf π̃n(E)m is isomorphic to the presheaf

U 	→ [Σ∞
S1(U+)[n], ωGm(E(m)[m])]S

1

Definition 5.1.12 Let E be a P1-spectrum and (n, m) ∈ Z2 be integers. We
denote by

πn(E)m ∈ Ab(VNis)

the sheaf (of abelian groups) associated to the presheaf π̃n(E)m.

With the notations of Section 4.3, taking into account 5.1.11, this means
that

πn(E)m = πn(ωGm(E(m)[m]))

Remark 5.1.13 By the previous Remark 5.1.11 and by Lemma 4.3.7 we see
that the sheaves πn(E)m are each strictly A1-invariant.

Proposition 5.1.14 Let E be a P1-spectrum. Then E is trivial in SH(k) if
and only if the sheaves πn(E)m are trivial for each (n, m) ∈ Z2.

Indeed, the vanishing for a fixed m of all πn(E)m means the vanishing
of all πn(ωGm(E(m)[m])) and from what we know on S1-spectra this implies
that the S1-spectrum ωGm(E(m)[m]) is trivial. Consequently, this implies
that the presheaves π̃n(E)m also vanish.
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5.2 The homotopy t-structure

Definition 5.2.1 We denote SH(k)≥0 ⊂ SH(k) the full subcategory con-
sisting of P1-spectra E with

πn(E)m = 0

for each m ∈ Z and each n < 0.
We denote SH(k)≤0 ⊂ SH(k) the full subcategory consisting of P1-spectra

F with
πn(F )m = 0

for each m ∈ Z and each n > 0.

Example 5.2.2 For U ∈ Sm(k), spectra of the form

Σ∞
P1(U+)(i)[m] ∼= Σ∞

P1(U+) ∧ S(m−i) ∧ Gm
m

are non-negative40 if m − i ≥ 0.

Using our previous results on the homotopy t-structure for S1-spectra, the
computation of Lemma 4.3.11 and the pair of adjoint functors (σGm, ωGm)
one easily proves

Theorem 5.2.3 The triple (SH(k),SH(k)≥0,SH(k)≤0) is a t-structure [6]
on SH(k).

This t-structure is called the homotopy t-structure on SH(k).

It is non-degenerate in the sense that for any E ∈ SH(k) and any U ∈
Sm(k), the morphism :

[Σ∞
P1(U+), E≥n] → [Σ∞

P1(U+), E]

is an isomorphism for n ≤ 0 and the morphism :

[Σ∞
P1(U+), E] → [Σ∞

P1(U+), E≤n]

is an isomorphism for n > dim(U).

40in SH(k)≥0
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A description of the heart The heart of the homotopy t-structure is
denoted πA1

∗ (k). We will use the construction described in Definition 4.3.10.

Definition 5.2.4 A homotopy module over k is a pair (M∗, μ∗) consisting
of a Z-graded strictly homotopy invariant sheaf M∗ together with, for each
n ∈ Z, an isomorphism of abelian sheaves :

Mn
∼= (Mn+1)−1,

Let’s start with the following lemma:

Lemma 5.2.5 For any P1-spectrum F the canonical morphism

ωGm(F ) → Hom(Gm, ωGm(F ∧ Gm))

is an isomorphism.

Indeed for any S1-spectra F one obtains by adjunction and invertibility
of the smash-product by Gm the following sequence of isomorphisms :

[F ∧Gm, ω(G∧Gm)]S
1 ∼= [σGm(F ∧Gm), G∧Gm] ∼= [σGm(F )∧Gm, G∧Gm]

∼= [σGm(F ), G] ∼= [F, ω(G)]S
1

Let E be a spectrum. We have seen in the previous section that there
are natural isomorphisms of sheaves

πn(E)m
∼= πn(ωGm(E(m)[m]))

By the preceding lemma the canonical morphisms

ωGm(E(m)[m]) → Hom(Gm, ωGm(E(m + 1)[m + 1]))

are isomorphisms. By Lemma 4.3.11 one gets canonical isomorphisms

πn(E)m
∼= πn(ωGm(E(m)[m])) ∼= πn(Hom(Gm, ωGm(E(m + 1)[m + 1])))

∼= (πn(ωGm(E(m + 1)[m + 1])))1
∼= (πn(E)m+1)−1

Thus for a fixed integer n ∈ Z, the collection of πn(E)m, m ∈ Z, forms a
homotopy module, which is denoted

πn(E)∗
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and called the n-homotopy module of E.

Conversely, let M∗ be a homotopy module. We construct a S1 ∧ Gm-
spectrum denoted HM∗ as follows. Its n-th term is the simplicial sheaf
K(Mn, n)ΔopShv•(Shv(VNis)). The structure morphism is the obvious com-
position

K(Mn, n) ∧ S1 ∧Gm → K(Mn, n + 1) ∧ Gm → K(Mn+1, n + 1)

In the following we identify SHP1
(k) and SHS1∧Gm(k), and thus will consider

HM∗ as a P1-spectrum as well.
Using all our previous results, now, it is not difficult to prove the:

Theorem 5.2.6 The functor from the category of homotopy modules to the
stable homotopy category of P1-spectra

M∗ 	→ HM∗

is fully faithful and induces an equivalence between the category of homotopy
modules and the heart of the homotopy t-structure. Its inverse is induced by
the functor

E 	→ π0(E)∗

We observe that as a consequence of the symmetric monoidal structure on
SH(k) we get a symmetric monoidal structure on the category of homotopy
modules41 by setting

M∗ ⊗ N∗ := π0((HM∗) ∧ (HN∗))

Of course the unit in that symmetric monoidal structure is π0(S
0)∗ and we

observe also that π0(Gm)∗ is automatically an invertible object (with inverse
π0(Gm

−1)∗).

5.3 Examples

Rost’s cycles modules [33]. Let M∗ be a Rost’s cycle module on k [33].
We denote by Mn the presheaf on Sm(k) : X 	→ A0(X, Mn). It is a strictly
homotopy invariant sheaf in the Nisnevich topology. There is also an isomor-
phism (Mn)−1

∼= Mn−1 which follows from the results in [33]. Thus such a
cycle module define a homotopy module M∗ and a P1-spectrum HM∗.

41which we will identify with the heart of the homotopy t-structure
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Example 5.3.1 The fundamental example of Rost’s cycle module is given
by unramified Milnor K-theory

KM
∗

Recall from [18] that the Milnor K-theory of a field F is the graded algebra

KM
∗ (F )

obtained as the quotient of the tensor algebra (over Z)

TensZ(F×)

on the Z-module F× (multiplicative group of F ) by the two sided ideal gen-
erated by the Steinberg relations

u ⊗ (1 − u)

for each u ∈ F× − {1}.
The sheaf42 KM

n has value on an irreducible X ∈ Sm(k) the group of
unramified elements in KM

n (k(X)) (where k(X) means the function field of
X)

KM
n (X) := Ker

(
KM

n (k(X))
⊕

x∈X(1)∂x→ ⊕x∈X(1)KM
n−1(κ(x))

)
i.e. the kernel of the sum of all the residue morphisms [18]

∂x : KM
n (k(X) → KM

n−1(κ(x))

indexed by the set X(1) of points of codimension one in X.

Motivic cohomology spectrum A reformulation of one of the basic def-
initions and computations in [35] is the:

Theorem 5.3.2 For any n < 0 one has

πn(H)∗ = 0

and the canonical morphism

π0(H)∗ → KM
∗

is an isomorphism.

42indeed strictly A1-invariant sheaf
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Indeed the value of the sheaf πn(H)m on Spec(k) is the group

[Sn, H(m)[m]] ∼= Hm−n(Spec(k); Z(m))

In particular it vanishes for n < 0 and any m by [35] which proves the first
part. The second part is a reformulation of the fact that the isomorphism
H1(X; Z(1)) = O(X)× induces (by cup-products) an isomorphism

KM
n (k) ∼= Hn(Spec(k); Z(n))

In the same spirit one can prove the following basic statement

Theorem 5.3.3 The canonical morphism

π0(MG�)∗ → KM
∗

is an isomorphism.

The proof of that result will be given in [24], see also the discussion in
the next section below. We observe as a consequence the

Corollary 5.3.4 The canonical map

k× = HomH•(k)(Spec(k)+, Gm) → [S0, MGl ∧ Gm] = MGl1,1(Spec(k))

induces by cup-product, for any integer n ≥ 0, an isomorphism

KM
n (k) ∼= MGln,n(Spec(k)) = [S0, MGl(n)[n]] = [S0, MGl ∧ (Gm)∧n]

We observe that by the connectivity Theorem 4.2.10, the groups

MGln,n(Spec(k))

vanish for n < 0 so in fact the corollary holds for any n ∈ Z.
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6 π0(S
0) and Milnor-Witt K-theory of fields

In this section, we will simply denote by Gm the P
1-spectrum Σ∞

P1(Gm) and
P1 the P1-spectrum Σ∞

P1(P1).

So far we haven’t said anything on the question we addressed in the
introduction to understand the groups

[Sm, Gm
∧n] = πm(S0)n(Spec(k))

An obvious corollary of Theorem 4.2.10 is the fact that

[Sm, Gm
∧n] = 0 for any m < 0

Our last part will now address the problem of computing

[S0, Gm
∧n]

for all n ∈ Z.

6.1 The element ε

Let ε ∈ [S0, S0] be the morphism induced by the pointed morphism

Gm → Gm, u 	→ u−1

Lemma 6.1.1 1) The pointed morphism

f : P
1 → P

1, [x, y] 	→ [y, x]

corresponds in [S0, S0] to −ε.

2) The permutation morphism

Gm ∧ Gm
∼= Gm ∧ Gm ∈ [Gm ∧ Gm, Gm ∧ Gm] = [S0, S0]

corresponds to ε.
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The first point is an easy consequence of that fact that f restricts to the
morphism Gm → Gm, x 	→ x−1, and that it permutes the two canonical affine
line in P1.

To prove the second point, taking into account that P1 ∼= S1 ∧ Gm it is
sufficient to prove that the permutation

P
1 ∧ P

1 ∼= P
1 ∧ P

1

corresponds to −ε. Consider the canonical A1-weak equivalences P1 →
A

1/A
1 − {0} and the isomorphism of pointed sheaves 3.3.2

A
1/A

1 − {0} ∧ A
1/A

1 − {0} ∼= A
2/A

2 − {0}
The permutation is given by the action of the matrix

(
0 1
1 0

)
=

( −1 0
0 1

)
.

(
0 −1
1 0

)

and because the last one has determinant +1 our permutation is equal in
[S0, S0] to the morphism defined by the first matrix (any matrix of SL2(k) is
a product of elementary matrices and thus is A1-homotopic to the identity in
H•(k)). Thus the permutation of P1∧P1 corresponds in fact to the morphism
P1 → P1, [x, y] 	→ [−x, y]. But the same trick (using the action of Gl2(k) on
P1) shows that the latter is A1-homotopic to P1 → P1, [x, y] 	→ [y, x], which
by 1) is −ε.�

We observe that the groups [S0, Gm
∧n], n ∈ Z, form a graded associative

algebra. The product is just induced by the smash-product43.

Corollary 6.1.2 The Z-graded algebra

[S0, Gm
∧∗]

is ε-graded commutative in the sense that if α has degree n and β has degree
m then

α.β = εnmβ.α

This of course follows immediately from 2) of Lemma 6.1.1.

43It can be shown to be also induced by the composition in SH(k)
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6.2 The Hopf map

The Hopf map44 is the canonical morphism of k-schemes

Hopf : A
2 − {0} → P

1, (x, y) 	→ [x, y]

We observe it is pointed if we point A2 − {0} by (1, 1) and P1 by [1, 1].

Lemma 6.2.1 The cone of the Hopf map is canonically isomorphic in the
pointed A1-homotopy category to the 2-dimensional projective space P2.

Indeed let E(λ) = A2−{0}×Gm A1 denote the total space of the canonical
line bundle on P1. Then the Hopf map factors as the open immersion A2 −
{0} → E(λ) followed by the projection E(λ) → P1 which is an A1-weak
equivalence. Thus the cone of the Hopf map is isomorphic in H•(k) to the
quotient E(λ)/A2 −{0}. But E(λ) is isomorphic to the open complement of
the closed [1, 0, 0] ∈ P

2. Moreover the complement of the projective line at
∞, P1 ⊂ P2 is A2 and the intersection of the two open subset E(λ) and A2

in P2 is A2 − {0}. Thus we get a (cartesian and) cocartesian square

A2 − {0} → A2

↓ ↓
E(λ) → P2

which gives the required isomorphism

cone(Hopf) ∼= E(λ)/A
2 − {0} = P

2/A
2 ∼= P

2 �

The (co)cartesian square, corresponding to the open covering of A2 −{0}
by Gm × A1 and A1 × Gm :

Gm × Gm → Gm × A1

↓ ↓
A1 × Gm → A2 − {0}

defines an isomorphism in H•(k)

A
2 − {0} ∼= (Gm)∧2 ∧ S1

44or Hopf fibration
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Recall also from 3.1.10 that P1 ∼= S1 ∧Gm in H•(k). Thus the Hopf map can
be considered as a morphism

Hopf : (Gm)∧2 ∧ S1 → Gm ∧ S1

We still denote by Hopf ∈ [Gm, S0] the morphism in SH(k) induced by the
Hopf map after applying the suspension spectrum and after simplification by
Gm ∧ S1, which is invertible.

Recall also the following well-known trick in algebraic topology:

Lemma 6.2.2 Let X and Y be pointed simplicial sheaves. Then there is a
canonical SH(k)-isomorphism45

Σ∞
P1(X ) ∨ Σ∞

P1(Y) ∨ Σ∞
P1(X ∧ Y) ∼= Σ∞

P1(X × Y)

The proof as usual consists, because any pointed suspension being a co-
group object in Hs,•(VNis), in splitting the cofiber sequence

X ∨ Y → X × Y → X ∧ Y

after applying the suspension spectrum functor Σ∞
P1 by describing a left in-

verse Σ∞
P1(X × Y) → Σ∞

P1(X ) ∨ Σ∞
P1(Y) to the natural inclusion. For this we

observe using the additive structure that it suffices to take the “sum” of the
two obvious morphisms induced by the two projections Σ∞

P1(X×Y) → Σ∞
P1(X )

and Σ∞
P1(X × Y) → Σ∞

P1(Y).�

We apply the previous splitting with X = Y = Gm, so that

Σ∞
P1(Gm × Gm) ∼= Gm ∨ Gm ∨ (Gm ∧ Gm)

As a consequence, the product morphism of the multiplicative group

μ : Gm × Gm → Gm

induces a morphism

Gm ∨ Gm ∨ (Gm ∧ Gm) → Gm

45In fact this isomorphism hold inH•(k) after one suspension
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and we denote by
η : Gm ∧ Gm → Gm

the morphism induced on the factor Gm ∧ Gm.

Thus η ∈ [Gm∧Gm, Gm] = [Gm, S0] and the Hopf map can be interpreted
as elements in

[Gm, S0]

Lemma 6.2.3 In [Gm, S0] one has the equations

Hopf = η.ε = η

The first equality follows rather formally from the fact that in P1 one has
for (x, y) ∈ Gm

2:
[x, y] = [1, x.y−1]

and the second follows from 2) of Lemma 6.1.1 and the commutativity of the
product on the multiplicative group.

η and orientable homotopy modules Let’s still denote by

η : π0(Gm)∗ → π0(S
0)∗

the induced morphism by η on π0()∗.
We have the following fundamental

Lemma 6.2.4 In the abelian category π∗(k) of homotopy modules, there is
an exact sequence

π0(Gm)∗
η→ π0(S

0)∗ → KM
∗ → 0

This result easily implies Theorem 5.3.3 because the map

Σ∞
P1(P2)(−1)[−2] = cone(η) → MGl

is obtained by adding “0-connected cells” and thus induces an isomorphism
on π0()∗.
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Definition 6.2.5 A homotopy module M∗ will be say to be orientable if the
morphism of homotopy modules

IdM∗ ⊗ η : M∗ ⊗ π0(Gm)∗ → M∗

is zero.
In other words, using Lemma 6.2.4, the category of orientable homotopy

modules is exactly the category of modules over the monoid KM
∗ ∈ π∗(k).

The fact that π0(MGl)∗ = KM
∗ also means that these orientable homo-

topy modules have a canonical structure of MGl-module.

Conjecture 3 The functor above functor M∗ 	→ HM∗ induces an equiva-
lence between the category of Rost’s cycle modules and the category of ori-
ented homotopy modules.

Remark 6.2.6 Define a motivic homotopy module over k to be a pair

(M∗, μ∗)

consisting of a Z-graded homotopy invariant sheaf with transfers [38] M∗
together with, for each n ∈ Z, an isomorphism of abelian sheaves :

Mn
∼= (Mn+1)−1,

By the results of Voevodsky in [37], any homotopy invariant sheaf with trans-
fers is strictly homotopy invariant and thus any motivic homotopy module
M∗ defines a homotopy module. We also conjecture that this functor should
induce an equivalence between the category of motivic homotopy modules
with the full subcategory of orientable homotopy modules. We observe that
F. Déglise has given in [10] an equivalence between the category of motivic
homotopy modules and that of Rost’s cycle modules.

6.3 Milnor-Witt K-theory and ⊕n∈Z[S0, Gm
∧n]

This section is based on a collaboration with Mike Hopkins.

We start by pointing out some obvious elements in the graded group

[S0, Gm
∧∗]
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First to any u ∈ k× is associated a pointed morphism Spec(k)+ → Gm (in
H•(k) say) which induces by taking the suspension spectra a morphism

[u] : S0 → Gm

thus defining the element [u] ∈ [S0, Gm].
We also have defined in the previous section the Hopf element

η ∈ [Gm, S0] = [S0, Gm
−1]

Definition 6.3.1 Let F be a field. We denote by T MW
∗ (F ) the free graded

associative algebra with a generator [u] of degree +1 for each u ∈ F× and
with one generator η of degree −1.

We denote by KMW
∗ (F ) the quotient of T MW

∗ (F ) by the relations of the
following type :

1 For each pair (a, b) ∈ (F×)2 :

[ab] = [a] + [b] + η.[a].[b]

2 (Steinberg relation) For each a ∈ F× − {1} :

[a].[1 − a] = 0

3 For each u ∈ F×

[u].η = η.[u]

4 η2.[−1] + 2η = 0

KMW
∗ (F ) is called the Milnor-Witt K-theory of F .

Remark 6.3.2 Clearly, the associative graded algebra KMW
∗ (F )/η is the

Milnor K-theory KM
∗ (F ) of F .

One of our main reason to introduce the Milnor-Witt K-theory of a field
F is the following Theorem46

46Obtained in collaboration with Mike Hopkins
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Theorem 6.3.3 The canonical graded ring homomorphism

TMW
∗ (k) → ⊕n∈Z[S0, Gm

∧n]

[u] 	→ [u] ∈ [S0, Gm]

η 	→ η ∈ [S0, Gm
−1]

satisfies the 4 relations of Definition 6.3.1 and thus induces a graded ring
homomorphism

KMW
∗ (k) → ⊕n∈Z[S0, Gm

∧n]

For any u ∈ F×, set:

< u >:= η[u] + 1 ∈ KMW
0 (F )

Lemma 6.3.4 For any u ∈ k×, the morphism < u >: S0 → S0 defined
by the previous formula corresponds to the pointed morphism (of pointed
smooth k-schemes)

fu : P
1 → P

1, [x, y] 	→ [ux, y]

Indeed, this morphism is clearly the unreduced suspension the morphism
Gm → Gm, x 	→ u.x which can be written as the composition of the product
Id×u : Gm ×Spec (k) → Gm ×Gm and of the product of Gm, which implies
the result.

Remark 6.3.5 One can now “compute” ε ∈ [S0, S0] as follows. By Lemma
6.1.1 and its proof we know that −ε is the morphism f−1 : P1 → P1, [x, y] 	→
[−x, y]. This one now is < −1 > by the previous Lemma. Thus

ε = − < −1 >

We observe then that relation 4 can be also rewritten as

η.ε = η

which is known to be true by 6.2.3.

Sketched proof of Theorem 6.3.3. The first relation simply follows from
the definition of η as a factor of the suspension of the product of Gm. The
relation 2 follows from the following fundamental result:
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Theorem 6.3.6 [29] The canonical composed pointed morphism

Gm − {1} (u,1−u)→ Gm × Gm → Gm ∧ Gm

becomes trivial after applying the suspension spectrum.

The relation 3 follows from an easy computation and relation 4 was es-
tablished in the previous Remark.�

The following lemma is not difficult:

Lemma 6.3.7 1) < ∀(u, v) ∈ (F×)2, uv >=< u > . < v >∈ KMW
0 (F ).

2) ∀u ∈ F×, < u2 >= 1.
3) ∀u ∈ F× − {1}, < u > + < 1 − u >= 1+ < u(1 − u) >.

Recall that the Grothendieck-Witt ring of F is the Grothendieck group
GW (F ) of the monoid of isomorphism classes of quadratic forms over F .
For any u ∈ F×, we denote by < u >∈ GW (F ) the (class of the) quadratic
form of rank one u.X2. It is known47 [34] that the relation from the previous
lemma between the < u >’s gives a presentation of the ring GW (F ). Thus
as a corollary we get a canonical ring homomorphism

Φ : GW (F ) → KMW
0 (F ), < u > 	→< u >

In fact it is not difficult to prove:

Lemma 6.3.8 This ring homomorphism

Φ : GW (F ) → KMW
0 (F ), < u > 	→< u >

is an isomorphism.

In degree 0, the Theorem above thus defines a ring homomorphism48

GW (k) → [S0, S0]

This was first obtained in collaboration with J. Lannes using a Lefchetz for-
mula for the morphism fu : P1 → P1, [x, y] 	→ [ux, y] (observe that the fixed

47here we assume char(F ) �= 2
48at least if char(k) �= 2
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points of fu are precisely 0 and ∞). Since then, there has been several differ-
ent constructions of this homomorphism by Jean Lannes, Markus Rost, and
finally the one above by Hopkins and the author.

Now, let h := 1+ < −1 >∈ GW (F ) = KMW
0 (F ) denote the hyperbolic

plane. Then relation 4 is also equivalent to

η.h = 0

Recall [34] that the Witt ring of F is the quotient of GW (F ) by h. As a
consequence, we see that the multiplication by η

GW (F ) = KMW
0 (F ) → KMW

−1 (F )

kills the hyperbolic plane h ∈ GW (F ) and induces homomorphisms

W (F ) → KMW
−1 (F ) → KMW

−2 (F ) → · · · → KMW
−n (F ) → . . .

One easily checks:

Lemma 6.3.9 In the previous diagram, the homomorphisms are all isomor-
phisms.

6.4 The basic theorem

Theorem 6.4.1 For any (perfect) field k of char �= 2 the canonical homo-
morphism

KMW
∗ (k) → ⊕n∈Z[S0, (Gm)n]SH(k)

is an isomorphism.

Remark 6.4.2 In degree 0 the previous statement says that the homomor-
phism

GW (k) ∼= [S0, S0]

is an isomorphism. The fact that such a theorem would hold was rather
clear from our work in [20, 23], where, for any field k of characteristic 0 we
showed, using the both the proof of the Milnor conjecture on Galois mod. 2
cohomology as well as the computation by Voevodsky of the motivic Steenrod
algebra, that the Adams spectral sequence for the sphere spectrum based on
mod 2 motivic cohomology converges to the graded ring associated to the
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filtration of the Grothendieck-Witt ring of quadratic forms over k by powers
of the ideal of even dimensional forms49.

Remark 6.4.3 In negative degrees , the Theorem gives isomorphisms

W (k) → [Gm
∧n, S0] = [S0, Gm

∧−n]

for any n > 0.

Remark 6.4.4 We observe that statement 6.4.1 implies Lemma 6.2.4 by
Remark 6.3.2.

The proof uses recent results by Hornbostel [12], Panin [27] and Arason
and Elman [2].

Hornbostel proved in [12] that there is a P1-spectrum KO (resp. KW )
which represents hermitian algebraic K-theory (resp. Balmer’s Witt groups
[4]).

By the results in Section 5.2, this implies that the associated sheaf to
U 	→ W (U) (the Witt group of U) is a strictly A1-invariant homotopy sheaf
that we denote by W (unramified Witt groups). In fact this was also proven
directly recently by Panin [27].

Now recall the following standard definitions for a Field F . Let I(F )
denote the kernel of the mod rank homomorphism

GW (k) → Z

For any u ∈ F× we denote << u >>:= 1− < u >∈ I(F ). Obviously the
symbols << u >> generate I(F ) as an abelian group. Through the map
GW (F ) → W (F ) the symbol << u >> is mapped to the (class of) the
Pfister form 1+ < −u >. Clearly the diagram of commutative rings :

GW (F ) → Z

↓ ↓
W (F ) → Z/2

is cartesian. Thus the quotient map GW (F ) → W (F ) identifies I(k) with
the kernel of the mod 2 rank homomorphism W (k) → Z/2.

49In fact we showed there using these ideas that Voevodsky’s results imply that the
spectral sequence degenerate in the critical area. This allowed us to give a new proof of
the Milnor conjecture on the graded ring of the Witt ring of k
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For any integer n ∈ Z we set In(F ) := (I(F ))n for n ≥ 0 and In(F ) :=
W (F ) for n ≤ 0.

Let’s denote by J1(k) the fiber product of the diagram :

F×

↓
I(F ) → I(F )/I(F )2

It is in a canonical way a module over GW (F ). For any u ∈ F× we denote by
{u} ∈ J1(F ) the element corresponding to the opposite of the Pfister form
< 1 > + < −u >∈ I(k) and u ∈ F×.

Recall from [5] that we set for n ≥ 0 :

Jn(F ) := I(F )n ×I(F )n/I(F )(n+1) KM
n (F )

and that we set Jn(F ) = W (F ) for n < 0. The Jn(F ), n ∈ Z, form altogether
a Z-graded associative ring that we denote J∗(F ).

Theorem 6.4.5 The correspondence u 	→ {u} ∈ J1(F ) and η 	→ 1 ∈
W (F ) = J−1(F ) induces a graded ring homomorphism

KMW
∗ (k) → J∗(k)

which is an isomorphism50.

The proof of this theorem uses some results by Arason and Elman [2],
which relies on the Milnor conjecture. On the way we can reformulate Arason
and Elman result as follows:

Definition 6.4.6 Let us define the Witt K-theory of the field F as the quo-
tient

KW
∗ (F ) := KMW

∗ (F )/h

Theorem 6.4.7 The canonical graded ring homomorphism

KW
∗ (F ) → I∗(F )

is an isomorphism.

50for char(F ) �= 2
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All these results allows us to define a homotopy module

KMW
∗

with value KMW
∗ (F ) on fields and with a canonical map

π0(S
0)∗ → KMW

∗

Theorem 6.3.3 gives a section of that morphism on each field. We prove then
that these sections define altogether a section of monoids

KMW
∗ → π0(S

0)∗

which has to be an isomorphism because π0(S
0)∗ is the unit object.�
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