Workshop on the ramification theory for varieties over a local field II

9-10 February 2022, online workshop

In these series of workshops, we aim to study the conductor formula for constructible sheaves on regular schemes over a local ring.

Organizers

Fangzhou Jin, Peng Sun, Enlin Yang, Yigeng Zhao
This workshop is supported by the National Key Research and Development Program of China Grant Nr.2021YFA1001400 and the NSFC Grant Nr.12271006.

Speakers

Xiaowen Hu
Fangzhou Jin
Peng Sun
Enlin Yang
Yigeng Zhao

Schedule

Tencent Meeting: 777-5318-1470 pw: 235711

February 9
09:00-10:00 Log blow-up and log product 1 (Hu)
10:15-11:15 Log blow-up and log product 2 (Hu)
13:00-14:00 Lefschetz trace formula for open varieties 1 (Jin)
14:15-15:15 Lefschetz trace formula for open varieties 2 (Jin)
15:30-16:30 Intersection product with log diagonal 1 (Yang)
16:45-17:45 Intersection product with log diagonal 1 (Yang)
February 10
09:00-10:00 Brauer theory and Euler-Poincare characteristic 1 (Zhao)
10:15-11:15 Brauer theory and Euler-Poincare characteristic 2 (Zhao)
13:00-14:00 Swan class and Euler characteristic 1 (Sun)
14:15-15:15 Swan class and Euler characteristic 2 (Sun)

References:
[1] L. Illusie, Theorie de Brauer et caracteristique d'Euler-Poincare d'apres P.Deligne, Asterisque, 82-83 (1981):161-172.
[2] S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Proc. Sympos. Pure Math. 46 (1987):421-450.
[3] K.Kato and T.Saito, On the conductor formula of Bloch, Publ.Math.IHES, 100(2005):5-151.
[4] K.Kato and T. Saito, Ramification theory for varieties over a perfect field, Annals of Mathematics, 168(2008):33-96.