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CHAZPTID I, Preliminaries

Section 0, Introduction.

TXAMPLE (0.0). Let X be a topological space and let T be the
category whose objects are open sets of X and with Hom (U, V) consisting
of the inclusion map if U c V, empty otherwise, Then a presheaf FF on X
with values in a category C is a contravariant functor I : To — C. A

sheaf I is 2 presheaf satisfying the following axiom: For U €T, {Ui}

an open covering of U the sequence

F(U) — || F(U;) — || F(U; N U)
1 iJ

is exact with the canonical maps., (/e assume C has products, For the
definition of exactness, see (Sem., Bourb, # 195) ), Note that in T (in fact
in the category of topological spaces) U, n U 2 U, X UJ Therefore,

lu

DEFINITION (0.1). A Grothendieck topology T consists of a category

Cat T and a set Cov T of families {Ui -2-‘-> U}i(-:I of maps in Cat T called
coverings (where in each covering the range U of the maps ¢i is fixed)

satisfying



(1) If ¢ is an isomorphism then {ff} € Cov T.

(2) x{U,— U} €Cov T and {vij ~ U} €Cov T for each
i then the family {vij — U} obtained by composition is in
Cov T,

(3) ¥{U — U} €Cov T and V—> U € Cat T is arbitrary
then U; X V exists and {U; XV ——> V} €Cov T.
U U
Je will abuse language and call T a topology.
DEFINITION (9, 2). Let T be a topology and C a category with

products, A presheaf on T with values in C is a functor & ‘I‘o - C,
A sheaf F is a presheaf satisfying

(c) 1 {Ui ——- U} €Cov T then the diagram
F(U) -—>'I:]' F(U;) > TI: F(y, x uy)
]

is exact,

te shall restrict our attention to presheaves and sheaves with values in
(A2)or (lets), (mostly(Ab)). Note that if F has values in(Ab) then T is

a sheaf iff, it "is" a sheaf of sets,



EXAMPLE (0, 3). Let C be any category with fipe red products,
Then there f.s a canonical topology T associated to C, namely set
Cat T = C, Cov T, = set of families of maps {U; ~—=> U} in C which
are universal effective epimorphisms, i.e,, families satisfying

VzecbC

Ho— ., Z)—> || Hom (U, 2) —% TT Hom (Uié U, 2)

is exact, and similarly for a base extension {Ui X Vcomo V}. (One has
U

to check the axioms),

TAUTCLCGY (0.4). Every representable functor on C is a sheaf
of sets on T, I is useful to knm'w that the coverings in a topology are
universal effective epimorphisms, preferably in some largg category, so
that one can lay ones hands on some sheaves, Far instance, in example
(0. 0) the coverings are universal effective epimorphisms in the category
of all topological spaces, i.e., Hom ( ,Y)is a sheafon T for Y a

Top
topological space.

EXAMPLE (0.5)., Let T = T(setsy Then the coverings {y; — u}
are families of maps which are surjective (i, e, such that U is covered by
the union of the images of the DA Is), One verifies easily that every sheaf
of sets on T is a representable functor, namely I'(U) & Hom (U, F(e) )

where e is a set of one element. More generally



EXAMPLE (0, 5). Let G be a group and T, the canonical topology
on the category of left G-sets (sets with G operating). Again coverings
are families of G-mazfs which are surjective, zfnd every sheaf of sets is a
representable functor, in fact i*(U) ~~Hom,, (U, F(G) ) where F(G) is
obtained by viewing G as a left G-set and has as operation of G'€ G the one
induced by right multiplication on G by (r'-l

Therefore the category of abelian sheaves on T is equivalent with
the category of d—modules, and so the derived functors of a suitable left
exact functor [* ¢ ab, sheaves ——= (Ab) will be the ordinary cchomology
of groups with values in the corresponding G-module, The functor [(is of

course Fav-7(e) where e is a set of one element with its unique structure

of G=get,

EXLMPLE (0.  bis). Let G be a profinite group and set
Cat TG = Category of finite sets with continuous G=operation; Cov TG = finite
families of maps which are surjective., Cne may verify that the category
of abelian sheaves on TG is equivalent with the category of continuous
d—-modules (although this is not the canonical tOpology on Cat T, and
only the "finite!" sheaves are representeble). Hence, taking derived

functors of [* : ¥ w>F(e) one cbtains the Tate cohomology groups.

EXAMPLE (0, 7). LetXbea noetherimscheme,..a.nd‘-deﬁne"’]:x by.



Cat T, = category of schemes Y/X étale, finite type.
La

Cov Ty = finite surjective families of maps.

These coverings are universal effective epimorphisms in the category of

all preschemes,

For instance, if ¥ = spec k, k a field, then Cat T4 is dual to the
category of finite separable (commutative) k-algebras and by Galois
theory is equivalent to the category of finite sets with continuous G(k/k)
operation, where G(k/k) is the Galois group of the separable algebraic
closure k of k., As in (0. 6 bis) one gets Galois cohomology. This

example will be examined in more detail later,

Section 1, Generalities on }_in_;. Let I, C be categories and

F : I—> C afunctor. For X €C denote by gt I —~—» C the constant

functor carrying Ch I to < and F4 I to id,,. We obtain a covariant functor

Hor? (r, cy) : C = (Sets) which is denoted by lim I, If this functor
un > == :

is representable the object representing it is called lim F, Dually,
Hom (cx, F) is dencted by lim F,

Pl e V4

Let us write I, for F(i), ieobl),

PROPCSITICN (L 1), X C = (Sets) (rvesp. (Ab) ) then lim F is

representable,



. 2roof: Take

im 7 = F;/R (rcsp. @ F./R)
i icl

where R is the equivalence relation (resp. subgroup) generated by pairs
(%, y) (resp. elements x-y) , say x € Fis ¥y G Fj , suchthat 1 # : i~——j
in Iwith [F (#)] (2) = y.

s

Suppose C = (Sets) then R can be described as follows: For x € Fss
s ! ] -' ] .
;' we have (z,y) ER iff, 3 i=dp, iy vee, i =1 andj, -+, j and

x, €7 (xo=::, xn=y);zv€3?j and a diagram
/jl oo j .
(*) 1, \il/’ \in in I

* with

l{ ‘1...
ﬂ’/ e RL‘""«L\
X =Xg ‘-xl"rr/ X, =YV

under the induced maps, A diagram (¥) is called a connection of (i,1')
inl, Iis connected iff. every pa.ir(i,i") of elements has a connection,
Obviously if I = || o I is a direct sum (i.e. disjoint union) of categories

I then there is a canonical isomorphism



1l m FlI, —> lUim F
—— Sema

M~

(this doesn't depend on C). In particular, if I is a discrete category
(o category in which the arrows are reduced to identity maps) and if

direct sums exist in C then

Fx =, o
e .'il-qL 1

The following axioms for I are useful:

(L1) Given a diagram

such that the resulting square commutes,

(L2)Given a diagrami ™ - 3 a map j =——> k such that the

-ﬁ- J.
two maps i~ k obtained by composition are the same.

(1.3)I is connected,

Note that #f C = (Sets) and(Ll) holds then the equivalence relation R reads
xy (say x GI‘., vyEF, ) iff,



such that the induced images of %,y in Fy are equal, In other words, one

may talk more or less as is usuval with-inductive systems if (Ll) holds-in.I
and C = (Sets),

Now let C =(Ab) and denote by ¥ the category of functors F—3i——a(Ah)
7 is an abelian category and

PROPCSITICN (L 2), “The functor F~—(Ab) defined by Fam»lim F
is right exact,

We omit the proof,

Let I € Fand denote by gt lim F the limit of the underlying sets of F,
—
Then by definition of lim for setg there is a mapgei:lim¥F—> lim F, In

general this map is not bijective, However

PROPCSITICON (L 3). Suppose I # and that (L,1,2,3)hold in L

Then setlim F — lim F is bijective,
v emaindy, mnae.

Droof: Suppose first (L1, 3)-hold, and let



where say x , €F, . Applying (L3) and (L1) we can find a diagram

i,

Vi

e s e 8

inl, letz, GFj be the image of x, under the induced map, and set
z=bzy. Then¥x, ¥ 2z (mod }) where R is the subgroup defined in

the proof of (L, 1), This shows that the map
Fi —2 lim F
1'9[‘ ——

is surjective, and hence set im I' =2 lim I is obviously surjective,
——-——-9. ——y

Now suppose also (L.2) holds, Ve shall define a group law on
set lim I so that the maps Fj = set lim F are homornorphisms,
—p—— r——, -
This will induce a map lim F —— set lim F which, composed with the
anvensdd, pt—,

one under consideration, gives the identity, proving the proposition,

. Let X, ¥ € st lim I be represented by x,y., We may assume
x,y € T i €L Set X+y=%x Ty, The group axioms will be trivial if
this is well defined, as will be the fact that F'; =~ gt lim Fis a

. 1 —————e .

- |
homomorphism. So suppose x,y are also represented by x , y GFi'.



—lo—

Then there exist diagrams

: >j ; i>.il

]
in Iwithx =% inF; 3y =y inFj'. Apply(Llto the diagram

i /7j
\j'

to get
N
Ny

' : .
which commutes, We get two maps i —» k., Apply (L2)40o.taad ki k

' '
such that the two maps i —3 k-are equal, Then

i/'j \k' and i',/fy/yj\k'
Ny i

- ‘ .
both cozr_nnute and so the uniquely determined images in Fk' of x, x

] — T
(resp. y, y)are equal, Hencex ty=x ty .



-]l

CCROLLARY (1.4). If (L1,2) hold in I then lim is an exact functor :

—
F—=s. (ADb).

' 1
It is clear thatgetlim F Coeesgetlim Fif F G I (i.e.

1
F; &> I, for each i), Hence we are done if also (L3) holds by (L 2) and
(1. 3). If (L3) does not hold write I = J&L I, with I, connected and use the

fact that € is an exact functor,

DSFIMITION (1. 5)s A subcategory J clis a final subcategory

{formerly : cofinal) iff,
(i) Jis a full subcategory.
(ii) Foralli€l, 4 i~——=- jinlwithj€J,

Cne verifies easily the following:

PROPCSITICH (L. 6). Let JcIbe a final subcategory, (Lx) for I
— (ix)for J (x =1,2,3). If I satisfies (L1)and ¥ : I— C is
arbitrary then the canonical map lim F —= lim T|J is bijective,
: sAtAA m )

In particular, if Ihas a final object o (equivalently : {0 , idm} is a

final subcategory of I and (L1) holds in I) then lim F ~¢ Foe

Let again I be given, anda €1, Denote by a\ I the category of maps
a=—> iof lIand if F ; I ——=- C is a functor, denote by a\r : a\I—=~ C

the functor a\F (a — 1) = F(i).
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»ACPOSITION (I, 7), Let I, a, I be as above, Then (Ll) for
T== (L, 3) for a\Iland (L2) for I=2> (L2) for a\I, If I satisfies
(L1, 2, 3) thesi-the canonical map Uim F——a Um a\F is-bijective,

AN
We will verify-the last assertion: Let X €C, Ve have to show that

the obvious map Hom (7, cx)--> Hom (a\F, a\ cx). is bijective, This
means we have to show that an element '§€ Homx (&\ F, a\ cy) (e, a
collection of maps F; ~> X for each a ——=» 1 € a\l with the appropriate-
commuting relations) determines p unique element of Hom (F, ¢ x). S‘o let

§ be given and try to deﬂnew-ltma.p Fy ==X, Applying (L3), we
find a diagram

Hence ; includes a map Fj.-—-> X and we are forced to det'ine_:lg"i ~;>,fi€

by composition F, ——:> Fj ~st> X, The commuting relations will be
obvious if this is well defined, Suppose also

Apply (L1) to the diagram i > j' to find



w] 3=

1/7j TNy
\»Jl/’

which commutes, ~7e get two maps a —=> k, and applying (L2) we may
assume they are equal, Theng includes a unique_ly determined map

Fy —> X and since X is a morphism of functors, Fj ——- X (resp.

Fj' ~— X) is obtained by composition with Fj — Fy (rgsp. Fj' —>Fy)s
Therefore the maps Fy =2 i defined above are the same, namely they

are obtained by Fy ——>- Fl; > X, Done,

PROPOSITICH (L ). Let ¥, G, H : I—>{(Sets)bethree functors
and let F — G, H—3- G be morphisms. Suppose I satisfies (L1, 2, 3),
Then

im (FX E) m—slim F X lIm H .
—_— G ey lim G~y
-—+

MCRAL (1,9). Axioms {Ll,2,3) make Ias good-as an inductive-
system for limits,

PROPCSITION (L. 10). YLet I be given,3 the category of functors

l—~3-(Ab). For F €%, lim F is representable and the functor

VA,
Frwalim F ig left exact,
é——



-

Section 2, Presheaves. Let C be a category and denote by @ = &

the category of functors F : Co —~—3-(Ab)., We refer to such functors as

(abelian) presheaves on C. (The reader may, inserting axioms where

necessary, replace(4b) by an arbitrary category if he feels so inclined. )
All of the usual constructions available in(Ab) may be made in ¢ (by doing
them for each U € C) and all functorial properties are preserved. In
particular, @ is an abelian category and satisfies axioms AB6, 4"= (cf,
Tohoku Proposition 1, 5,1). A sequence F s F e F"G@ is exact

'
iff, F (U) ~—» F(U) —> F"(U) is exact for each U E€C,

1
Let C' be another category and f : C —» C a functor, Define a
]
functor P :@C' =@ —~—>- @by f£(F) =F o £, The functor ff is obviously

exact,

o<
Recall that if M eﬁ— N are categories and functors then @ is left

adjoint to o¢ iff, the functors Hom (Y, o¢X), Hom (@Y, X) : N X M~ (Sets)
are isomorphic, (If ol(resp. @) is given then@ (resp. o) is unique up to

isomorphism if it exists),

THZZOREM (2,1). (Kan) There is.a functor tp $ P ——— _@' left
adjoint to £, £, is right exact,

We sketclg the proof for the convenience of the readexs

1
For Y€ C, let IY = I.fy be the following category:



15~
(2. 2) Cb I';{ = {pairs (X, §) | X€obC , § € Hom' (Y, £(X) )}
with
tom ( (£ §)) » (5p0 B,)) = { GHom (X, X,) | €5V, = 9, }

Notice

L 4 -
(o) KY-—=5> ZinC we get a functor €3 Iy —>> I, in the obvious

way,

(b) ¥Fis 2 presheaf on C, we get a functor Fy : 12, ~=2._ (Ab) by
Fy ( (X, #) ) = F(X). It depends "functorially" on F,

Now set

f F(Y) = lim Fy = lim F(x .

®.hay

' .
fp F is made into a presheaf on C (i.e, a functor) by (a). Because of (b),
anwafp T is a functor, right exact by Proposition (L, 2). To show fp is
adjoint to f¥ we have to define for F € £, G € =’ an isomorphism

Hom (&, f© G) s Hom ({p F, G) which commutes with maps in @, G’ f.

Suppose g € Hom (F, P G). Th'en we have for each X € C a map

F(X) —> G(f(X) ). Hence for Y € C', x, ¢) € Iy we get a map



F(X) =~ G(£(X) )gﬂ>G(Y). and therefore a map _1.1;:; Ty = fp F(Y) = G(Y),
whence fp F —2- G, Conversely, if N € Hom (fp F,G) ;i.e., for

Ye C'. fp F(Y) ~= G(Y) then in particular if Y = £(:2) we have

£ F(E(X) ) —>- G(E(x) ). Now (X, idf(x)) € Lyx) and so there is a map

F(3Z) — £ D F(£(X) ). Composing, we find F(X) ——- G(£(X) ), whence

F = fPG, These maps are ?bviously inverses of each other and so

the theorem follows (of course, some details were omitted),

v/e want also to recall the following:

COROLLARY (2, 3), If £p is exact then ff carries injectives into
injectives.

For, if G € @ is injective, ie., Hom (%, G) is an exact functor
forx € @' we want to know Hom (x, £ G) exact for x €% This is the
same as Hom (£p x,.G) exact for x €@, Since fp is exact and G is
injective we are.done,

EXAMPLE (2,4), Let X €C and denote by 13t} the discrete
category Obi X} = {X}, F2{3} = {ia,}. Leti:{X} —— C be the inclusion,
A presheaf on {X} is 'justanabelian group, and for I € ‘;)C’ iPF = F(X). .
I e' claim ip i§ exact, and to show it we need to show l_i_::; is e_exa.ct for the
cotegories Iy, Y €C defined in (2.2). But cleaxly for (X, #),
X, ¥) Glil Hom ( (X, #), (X, ¥)) =’Qunlesa § =9 and = {MX} ifg =1y,
In other words liy is the discrete category on the set IHom (Y, X). So if

A is an abelian group then i A(Y) = @ A, This is certainly exact,
P Hom(Y, X)
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COROLLARY (2,5), K F € p c is injective then F(X) is an injective

abelian group for each X €C,

For, apply (2, 3).

NOTATION (2.6)., Leti:{X} ——> Cbe as above. We write
"}/X = ip Z'. » BO ’%{ e Q,C and we have'canon_icany. for F € a’.‘j)cn
Hom ( ?'X, F) 2~ Hom (Z, F(X)F(X), l.e., %x represents the
(covariant) functox @ —-(Ab) given by F~~>F(X), 7, depends
covariantly on X € C, Note that the presheaves 5/}:’ X éC, are a set
of generators for ‘-‘?C' Hence {cf.” Tohoku, Theorem L 10.1)

COROLLARY (2.7). Tvery F € @C can be embedded in an
injective,
-—t—-b. '
EXAMPLE (2,8). Suppose C<-g—- C are given with g left adjoint
to f and consider the eategory I, Y €C', Recall

obl, = {(X,9) | X€C, gre(x) 7Y} .

By adjointness of g to f this is the same as {(X,) ) | X €C, {1 X <—g(Y) 1.

Therefore it is clear thet I, has a final object, namely {g(¥), id), and so

if G @C fp F(Y) & F(g(Y) ) = gP F(Y). Hence £p',3 gP and so P carries
_injectives into injectives. This 'situation arises for lnstapco if one tries

to relate C to C/Y (Y €C fixed), and if X XY exists inC, VX,
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Section 3, Czech cohomology. Let C be a category and

{U‘.‘,< _»V}O(QI a family of maps in C. Suppose the products used

below exist in C, V/e get a lot of maps denoted symbolically by the
figure below

U} (o prei?

5 Uy 3 U 2 Uiy, 6, el =

If ¥ is a presheaf on C we obtain a diagram

MIECR rsfz T v, x ug)

(«,8)
—-E-‘:-g-—-e - F(U xU xUN)TTT > ...
F%(Em [ —

in the canonical way, Define

d : _IT- F(Uo( X oese X Uo( ) —— -n—

(0[00"' ’ O(n) oV v (°<0- - )F(UNO Xeos X u‘fﬂ’l

by



a, =5 7 i

and verifyd , ¢d =0, Cne obtains a functor@c —> (cochain complexes)
*

which is obviously exact (since AB4 holds in (Ab) ). Taking cohomology,

we get an exact sequence of cohomological functors @C —~=—3> (Ab)denoted

by H? ({U, —=> V}, ), where

0 L — TT =
H ({U, —> V}, F) =ker (I;I‘F(Ux)__}(;l(:lf;)n(uds s

These functors are called the Czech cohomology of the family {Uo( —y V}.

THEOREM (3.1). The functors H? (g>0) defined above are effacable

functors,

CCROLLARY (3.2). They are the derived functors of the left

exact functor Ho.

2roof of Theorem (3.1): Suppose F € GDC is injective and let

}/x e@ c be as in (2. 6). *7e want to show the cochain complex

| (U, )— || T(U ) =S ceen

u
x{‘,(&

defined above is exact. This is the same as showing



w20~

—ITHOm(ﬁu )—>—||I-'om(’é/U @,3)-———;“'

Hom (3 }/Uoz , 7)== Hom (& éUO( X U@' F) e *°° exact .
v‘ -

cince ¥ is injective it suffices to show
$ é_— e é-——- oo e
o o 3"0( v Us

is an exact sequence of presheaves (where the maps are determined by

the nrevious line), i.e., to show that for each Y €C

(*) € 300((1!) < (Y) «<— ...

(o(.,s) Jug v B

is exact. Remembering that 3,,(\’) = @ Z one sees easily that
Hom(Y,X)
the sequence (*) is induced by the obvious maps in the diagram

Hom (Y, )4""' 1L Hom (Y, U, xU) =
Jalc' T () - oy ve s 104.(3[,'1:/)

- G ccee
¢€-Ig|t_nL{Y,V) E{_{L I-som¢ (Y, Uy) -— (;l(:léa) Hom¢ (Y, U, % UP) ]
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oet S = Hom, (Y, U .

|50 = s x o =)

ge :-fy:‘n(y. V)

srlence we need to show that a diagram of the form

L@

Z $ Z e Z LI
< X3 OX3 X3

is exact, But this sequence is homotopically trivial, the homotopy

being given by

. .y ANMD . . 1 €2 fixed
n(‘or eec, 1n) n(lr10- *Ty ln) ( fixe )

for n(io. see, in) = n in the (io. eece, in)-th Component of sg-'-l Z

This completes the proof.
DEFINITION (3,3). Let

' '
{vg—v} ., {uy,—>v} .
oGl Vel

be families of maps in C. A map {UQL-—-b. v} i {U'\,——a» v} ia a
t

€ () such that

map I ~=3 I' and for X&€1 a map Uarf-ﬁ—o— U



UO(\T—Q}/e(d)
A'4

commutes,

Cne obtains.a diagram

Ve—o {uy}l T {Uo(:‘, U@}é___‘("—'

1 1‘ lm

S | P t 1 s
V4—-——— 'i_Uv} \= {Uvle/"}H ses @00

| *
where everything commutes, and hence a map of f of complexes

T £ =F(f) T£:=F(£xf)

T F (U} —— TTF () .:;U/'u) —

which induces a map on Czech cohomology, It is well known that:

’ |}
PROPOSITION (3.4). If, g: {vy— v} — {U, —> v}
are any two maps then f* » g* are homotopic, and hence the induced

maps on cohomology are equal.



Ve omit the proof, To get the last fact one has anyhow only
to check it for Ho, by Corollary (3. 2), and this is easy.



CHAPTER I, Sheaves

Section 1, Let T be a topology (I, Definition (0.]), let & be the
category of abelian presheaves on T and 4 c @Pthe set of sheaves. We
make /j into a full subcategory of Q, i.e., we define a morphism of

sheaves to be 2 morphism of presheaves. Dehote by i s 4 &

the inclusion,

THEOREM (L 1). There is a functor -J: (P —> § which is

adjoint to i.

¥rPed, P:H: = $ (P) is called the associated sheaf to P, Since

disa subcategory of Gthe adjointness property can be stated as follows:

There is a functorial homomorphism P —— P* which has the universal

mapping property for maps of P into sheaves, The proof is given in the
following pages. It can be used without change also for presheaves and

sheaves with values in (Sets, )

We begin by defining a functor + : &— &: Let U € Cat T be fixed

and denote by Jy, the category of coverings {Uo( —> U} of Uin Cov T,
with maps in the sense of I. (3. 3). A presheaf P € & induces a functor

0
Py: Iy —> (Ab) by

Py ({Uy—> U}) = ker (0T P(Uy ) - P(Ug ;Uﬁ ))

0 .
=H ({uy—>u}, @ .



Note that for V —g-b—- U we get also a functor Jy,; —-—‘ILQ- JV. by

{ug —> U} mus {U, XV —> v} (cf. L (0.1) (3) ), and a morphism
of functors Py =4~ 2. ¢ J(¢) since

Uaxvé_‘-u x Ug X VgUy XV x U, XV
u P u u v U
&= Uy xU

commutes and since ker is a functor. Therefore we get im Py —> lim Py,

-!; .
Set P+(U) = lim Py (dgh uo (T, U ; @) ) and give Pt the structure of
presheaf just defined.

Remark (a): Jy; is not a good category for limits, but because of

. (3.4) the homomorphism Py ({Uy——> U}) — 2y ({Vy —> U})
is uniquely determined if there exist maps lV‘, — U} {Uo(—-l'- U},
and so Py; JU——& (ab) can be factored through Jy; —> JU where J’U
is the partially ordered set obtained by writing {V, — U} > {Uy —> U}
iff. Jamap [V, — U} —s {Uy — U} .:fU is an inductive system
because (L3) (cf, L Section 1) holds in Iy In fact, if {Ugy——> U,
{Vy — U} €Cov T then {U, XVy —> U} €Cov T by axioms (3), (2)
of L (0.1), and we have canonical maps {Uy—> U} «— {U, X Vs ut

- {V,, — U}



It follows, since || is exact and ker is left exact, that + : (S %

is left exact,

Remark (b): For every {U‘,( — U} € JU there is a canonical map
P(U) —> Py ({Uy —= U}) given by 2(U) —=T] 2(Uy). Since (L3)
holds in J y the limit of the constant functor J% s (Ab) with value P(U)
is canonically isomorphic to 2(U). We get a functorial homomorphism
P—> > and by definition of sheaf, if 5 €4, then S —= S s bijective.
Hence any map of P into a sheaf must factor through P+. Therefore

Theorem(l. ) will be proved if we show
SURPRISE (. 2). P is a sheaf.
DEFINITION (L. 3). Let P € . P satisfles (+) iff.
For all {Uy —~—s U} €Cov T; P(U) —> ] P(Uy ) is injective.
(.. 2) (and hence (L.1) ) follows.from the following

LEMMA (1, 4), (i) P' satisfies (+). " (1) I P satisfies (+) then
P+ is a sheaf,

Proof of (i): let P € ¢, Uy = U} €Cov T be given. Let
€ ¥ rF g . . ot
‘s’p §2 61_3+(U) and suppose §l' §z have the same image in P (Uo( )s

all of , -‘fv gz may be represented by elements



2T
Ep 5z €ker (IT@(vy, ) T TIR(V,, X Vyr) )

for some {VV ~s U} €Cov T (we are tacitly using remark (2) ). Now

the image of {i in P¥ (U, ) is then represented by the image of §i in
e, e L]
ker(”P(U x V)~ || P(U,x V, xV )) .
v o Xy YV >y K &Xg Yoy VY

Since gl = ‘52 there is a "finer" covering {Wo(/u r—— Uot} such that the
images of El' gz in Tl:a P(Wa't/4 ) are equal., But then, letting oc vary, the
family {W o~ U} € Cov T is a refinement of {V,, — U} and

§1= gzinTro()/uP (WO(/“)' so fl = _§_Z'

Proof of (ii): Note first that

(1. 5) If P satisfies (+) and it {Vy) —> U} Lo {U —s U} in 3y
then the map ker ('n'P(UD():‘; TT P(U, XUg ))
—> ker (TTP(v, ):’; TTo(v,, G v/“) ) is injective,

For, consider the diagram




Holding « fixed, {V, % Un=—> Uy} €Cov T by axiom (3) of L, (0. 1).

Hence I—rP(Uo( ) — Tl_P(Vv %‘J U, ) because of (+). By axiom (2)
- “' -

o,V
for T, {VV :J Uq — U}d.v €Cov T, Combining, we find the map

ker ([T 2(Ux) 2 T P(Up X Uy ) ) —> ker (T »(v,, x U= )

induced by p, is injective, But this map is unique (cf, L (3.4) ) and is
therefore the same as the one induced by Py -° f. So the one under

consideration (induced by f)  is also injective.

Now say ™ satisfies (+), let {Vy ——> U} € Cov T.and

geker (T2 (Vo T3 TV XV ))

We have to show gis image of some element in P+(U). Choose for

o ™

each o a family {Wyy —> V o} €Cov T with & €ker (T[P(W, ») 2
representing the o{~-th component got of g. Consider the diagram (in

which all squares are cartesian)



{v;} < \{V&‘*)l(;\lp-}:..é—-—— {vy x Vol
YJ £ {V@} < {1""er}

Ve find ’%’0( induces by base extension an element

1 A = [ '.' '
50(/3 €ker @—P( Y t); VB)-—-—> ;!;T;' - _—('"0( v X Vﬁ v, xvp h& v ,;va))
U

and §‘p induces an element

2 ) “r 2 <] A
§&P€kerc:r_(v“ X ‘P}*)'-'-a;ﬂ;- E 67“ X J'B/uvd :vpv"‘ ;.JML@.
U

By assumption.on }-, g(lxp and ;ifi represent the same
element of P+(V°£ x Vg ). Hence " §¢lei s ¥3 " in some covering
U

s L =4
of Vo( X V@
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which is 2 common refinement of {de %(J'Vﬁ — Vo, %(va’ }vand

{Va %(JW . — Vx{‘,"ﬁ };u' By (1, 5) this must be so in any common

refinenient, and hence " 5&/& = gzoqa“ in WP(VJQ v XVg ). This shows
s u

Cker (TT P(7,, )= T P, ,xW )), whence £ € P(U)
§ 0()\) xY ! o(,,))fg'u O( U B §

Having theorem (1. 1) one can copy large paris of Godement's book.

In particular,

' %
THECREM (L. 6). (i) 4 is an abelian category satisfying AB5, AB3

and has generators, (ii) i:d <3 €’ is left exact and #: P A is exact,

Proof of (i): Let F —= G € 4, and set K = "Presheaf. cokernel’,

Then if {Uy — U} €Cov T we have

0 . 0 0

| J |

E(U) —— [TK(Uy) Wx(uaéuﬁ)

! |

0 —>F (U) — [[F(U,) TTF(U,X;;U‘;)

| l |

0 —G(U) —— TlG(u,) TTG(UN{I ug) .

Wl

W
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Since ker is a left exact functor in (Ab) it follows that

K(U) < ker ([T K(Ux) —y TTK(U, auﬁ )) )

i,e,, that Kis a sheaf. Obviously, therefore, Kisa kernel in /L
(i.e. 0 —= Hom (X,K) —— Hom (X,F) —> Hom (X,G) is exact,

xeh)

Let C = "presheaf coker (F —=> G)", Then for X € A we have
(by the universal mapping property of P —> P# )

Hom (F, X) &—— Hom (G,X) &= Hom (C,X) <—— 0

l? \Le Le_

Hom (F*; X) &~ Eom (G*; X) &—— Hom (C#.X)

Here the top line is exact by definition of C, and since F,G are sheaves,
Fa F# and G G#. Therefore C# (with the induced map G —2- C*)

is a cokernel inxf .

Finally, let I = "presheaf coker (K ——3 F)" = "presheaf coimage
(F —= G)"., Then I# = “sheaf coimage (F = G)'" with the obvious
map, We need to show I# is the image = ker (G —> C#'). Now certainly
0 = I==2> G~ Cisexactin & since (Pis an abelian category.

Therefore, since i » # : & —>(is left exact because + is (cf. remark (a)),



0 ——>I* — G# — C# is exact in &, TRecalling the discussion of ker
above and that G —_— GlHI we are done,

%
AB3 (existence of product): Let Fi, 1€1be sheaves, It is

immediate that the presheaf product of the I'; s is a sheaf, and hence

a fortiori a product in the category of sheaves,

AB5 (existence of sums, etc,): Let F;, i €I be sheaves, and

F = "presheaf sum' of the Fi 8. By the universal mapping property of
#, it is clear that rtisa sum in the category of sheaves,

Let C, B be sheaves, and Ayc G‘G £1) an incrcasing filtexring family of '
subsheaves, Suppose given morphisms Ai—-> B compatible with the
inclusions of A in A (i<j). To complete the proof of AB5 we have to
find a map A ——>- B inducing the maps A; — B, where A = sup 4y € C,
Setz (U) = U Ai (U), whence AcCisa presheaf, OSince C is a sheaf, the
inclusion of & can be factored through A ——> y- S C. and since i is
left exact, K*C—-ﬁ;— C. Obviously A# (with this injection) is canonically
isomorphic to A, Since the maps A; — B define a map K —s. B and
since B is a sheaf, we find the desired map K# s B.

Generators: Cleary 3,# is a set of generators for Alctf. 1.(2.6) ).

NCTATICH (1. 7). We write ? i"; Z » Zy vepresents the

(covariant) functor & M*>F(ﬂl) on X,.



Proof of (ii): i:,4—> is left exact because the presheaf kernel

of a map of sheaves is already & sheaf, =||= :é’ ——7/§,is left exact because
ieis (as was noted .abOVe) and because i is left exact and fully fa'ithful.
To show § right exact, let © m—3 Pommn P = 0 €FPbe exact, and
X €. Then
Hom (P, %) <—— Hom (P, X) <—— Hom (P , X) <— 0
R A R

! ) 7'
Hom (@ 'H', X) &~ Hom (.?'H'. X) < Hom (P' #0 X)e— 0

commutes, and the top line is exact, hence the bottom is, and

Pl#—-—>- P'#-—»P"* —=2- 0 is exact,
MISCELLANY (1, 8):
(i) The category A bas enough injectives,
(ii) An injective in J is injective as presheaf,

(iii) For U € Cat T, the functor l."‘U t A s (Ab) given by
.EU(E) = F(U) is left exact.

(iv) Let 0 —> F —=3 G €,4 be exact, and C = "presbeaf cokernel

(F =~ G)", Then C satisfies (+),



Proof:
(i) cf. Tohoku, Theorem 1,10, 1,
(ii) Because # is exact (cf. L (2.3)).

Gii) U is the composition of the left cxact functor i and the exact

section functor on 6).

(iv) We have a diagram, for (U, —) U} €CovT:

0 0
! :

0 —— F(U) —_— TTF(Ui) ::
| }

0 —> 6(v) — Tlc)
| N

0 ——> ker —  lcu)
v
0

Hence C(U) = G(U)/F(U) <= kex (]T c(uy)) :': ).

HOMEWORK (L. 9). Discuss Hom (&, G).



Section 2, _Cohomology, Let f:J ——>(2 be any left exact functor,

where A is as above and ( is an abelian category. Because of (L, 8)(1) one

can define the right derived functors 2% of £ (cf. Tohoku, Section 2, 3),

NCTATION (2,1)., Let U€Cat T, The derived functors of
[ u y — ({“’) (cf. (L. 8) (iii) ) are denoted by Rq.l"U = HY(T, u; )
SR
So in particular, for F€ 4, H (T, U; F) = F(uU).

' 0
NOTATICN (2.2), Fixing T € 4, we get a functor [* (F) : Cat T ~> (AD)
by Um>F(U) = [{;(F). Denote by [ A == (ab) the functor Fam=>lim [(F)
; “ ' L
= Air o F(U). Because of I, Proposition (L 10), it is clear that
Uc Cst T
£ is a left exact functor., The right derived functors are denoted by

RAL = mi(T, ).

. 0.
Clearly, if Cat T has a final object X (initial in Cat T ), then
"l (T, ) ~HI(T, X;F), F 4.

NOTATION (2, 3). The right derived functors of i : { & Pare
dencted by RU = #9( ),

‘ 0
So for F € 4 the H(F) are presheaves, and A (F) = F viewed as

a2 presheaf, In fact, we have canonically

(2.4) [HI(=))(U) = BHe(T, U;7) .



To show this we remark that Hq(T, ; F') is a functor of U (i.e., a

presheaf) since F is, To show H2 (T, ; F) are the derived functors

of i we have only to check

(2) They agree if q =0,
(b) They vanish on injectives for q > 0,

(c) They form an exact cohomological functor,

All of these assertions are trivial,

PROPCSITICN (2.5): (AUF)) =0forFE S, q> 0,

2roof: It follows from Lemma (L 4) that for P € &, Pt e P*.

Hence we need only show ( 749(7) )# =0, Now # oix id ¢ . The
functor # is exact (by (L 6) ) and so its derived functors vanish, We get
a spectral sequence for the composed functor (cf, Tohoku, Theorem (2. 4,1) )

from which one can read off the desired result,

Section 3, The spectral sequence for Czech c chomology., Let
iU, —= U} €Cov T, and ¥ € {. Then F(U) is functorially isomorphic
0. . .
toH (LU, —> U}, T) (cf. L Section 3), by definition of sheaf. In other

words, the functor [* u defined above is isomorphic to the composition of

the functors i, I—Io( {Uy——- U}, ). Since 14 carries injectives into

injectives ( (1. 8) (fii) ) we obtain (cf. Tohoku, Theorem 2.4.1) .



- (=
SPAECTRAL SECUENCIE (3. l).

. .
Ef_:'q =HP ((Uy—> U}, #AF)) ==> H (T, U3F) (Fed)

More generally, let U € Cat T be fixed, and J ¢ JU be any
subcategory satisfying (1.3), where Jy is as in Section L. Denote by
0

H (J; ): &~ (ab) the functor
4]

4@ = Lm > H({Ugy—s U} ;P) .
(Uy—s> Ut €3

By reasoning similar to that of remark (a) of Section 1, one sees that
H%(J; ) is @ left exact functor and that its right derived functors
HY(J ; ) are obtained as

(3. 2) EA(;P) = = Lim U};?, Hl (fy, — U} ;7).
o("“'b-

(Cne uses Corollary (3, 2) and Proposition (3, 4) of Chapter I,) Moreover
["U is isomorphic to the composition of the functors i and HO (335 ).
Hence we obtain for F € 4,4

SPECTRAL SEQUENCE (3. 3),

B39 =uP (1 AYF)) = H (T, U; F). =< d)
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In the special case J = JU is the category of all coverings of U,

we write
NOTATION (3,4)

vo
H (T, U; P)

B (3, :P) = P(U) .

W
a3}
.
™1
J

A"
HYT, U; P) ® ei) .

v
Hq(T, Uz P) is called the Czech cohomology of P with respect to U,

Note that although it ie a functor on 7/ ' (which depends only on Cat T),

the Czech cohomology depends also on Cov T. (3.3) now reads, for

re§ .

SPECRTAL SEQUENCE (3,5).

El;-q - 1P (T, B; ¥ UF) ) => B*(T,U ; F) (F ).

Vv
Since H° (T,U; P) = P (U), it follows from Proposition (2.5) that

Eg'q = 0, q > 0, Therefore one reads from (3,5)

COROLLARY (3, 6).

Al | 1
H (T, G;F) « H (T, U;F)

v
H? (T, U; F) e—> H(T, U ; F) (refd).
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Section 4, The Catepory (Top). lLeray Spectral sequences.

Recall

y J
LEMMA @.1)(Tohoku), Letf : 2~ be a left exact functor
] ' ]
with &, (L abelian categories.and suppose ( has enough injectives,
K Mc ob o satisfies

(@) ForanreQ, § 0—» F— Mexactin Qwith METN,
(k) FOGEM = Fe 7.

1 Ty
{c) 00— M 2~ Mo—s F —s- 0 exactin 7, M, ME L

11}
then F € 72and f (0 — M —> Mo, M ——3-.0) is-exact,,

then all injectives are in 7/ and R% £(M) =0, all M€ 77, q> 0, (Hence

resolutions from 7] may be used to calculate the functors R%Y, )

DEFINITION (4, 2), Let T be a topology and F a sheaf on T. F is
flask iff, for every {Uy—> U} €Cov T, H? ({Uy — U}, 7) =0,
q> 0 (cf. L, Section 3),

PROPOSITION (4, 3), Let 0 —s F

2
\V
B
V'
=]

\!

be an exact sequence of sheaves, Then

1
(i) ¥ F is flask, the sequence is exact as a sequence of presheaves.

. |' 1
(li) oy » F flask ——— F  flask,



(iii) * @ G flask —==> F flask,

(iv) Injectives are flask,

1
Proof: (i): Say F flask, To show the sequence exact as a

1
sequence of presheaves it suffices to show the presheaf coker (F — F) =C

1"
is a sheaf, as then C NC# XF . We have to show for {Ua——e— U} €CovT

that C (U) — ker ([Tc(u)==X [l c (Uqaué )) = H°{ Uy~ U} 5C)

is bijective,

This is obvious from the diagram

0 ((U,—sUHF ) = H (] U, — U}, F) = 1 U,—0},C) —H ({u ,~Uu},F)

T T 1: H

0—>F(U) s F(U) ————> C(U) > 0

] 1 T
since B ({Ud-—-y U}, F ) = 0 by assumption,

(ii): Knowing (i), this is clear from the exact cohomology

sequences for H1 ({Uo( — U}. ).

(iii)s The cohomology commutes with finite direct sums.

(iv): Trivial,



CCROLLARY (4.4). Flask resolutions can be used to calculate the
derived functors HYT, U; )and A3 ) (cf. (2.1), (2.3)).

In fact, applying (4. 3) to (4.1) we find (iv) == (), (iii) == (b)
and (i), (i) == (c) if £{(F) = F(U) or i(¥). It is not true in general that
flask resolutions can be used to calculate Hq(T, ) (cf. (2. 2)).

DEFINITICH (4,5). We define the category (Top) of topologies as
f ollows: Ob (Iop) = set of topologies, and, for T, T €0b (Top),

L |
Hom (T, T ) = set of functors f: Cat T —3 Cat T satisfying:

1 {U, 2% U} €Cov T and V —> U €Cat T then
® {(uy) eds sujjecov T,

(1) #(u, x V) == (U o) X E(V) for all p¢(with the canonical map
4] £(U)
A functor f € Hom (T, T') is called a morphism of topologies.

EXAMPLE (4,6), let T, T' be the topologies on topological spaces

1 1

X, X respectively, A continuous map 7w : X - Il induces, as is well
]

known, a morphism f : T ——>- T'. If X cXis an open subset, then the

'
inclusion T © T is a morphism, adjoint in fact to the restriction

1
T-—-—? T above,

- . ) .
Let T, T € Ob{lop), Denote by ’&1" ,XzT', G)T.' @Tl the categories
of sheaves and presheaves on T, T' and by i, i', # , *' the functors of

'
Sectionl, Letf: T-— T be a morphism, It is immediate from



1 1
the definition above that if FC.4! thenf PF € &, (where £P is as

defined in I, Section 2). Ve pet a functor

A A S A I T LAk

'
which is clearly left exxact, So we have for F & ’&T' and U€Cat T,

5 ! ! . . s -
f  F (U)=F (£(U) ). One verifies readily that f has as left adjoint

by — Ay i £ = F et o1 .

8

Note however: It is not clear that f 5 is exact, even if fp is,

The right derived functors RU® of £° can be described as follows:

=ﬂ= and f* are exact, hence # o £P is exact, and so its derived functors
vanish, Therefore, since f° Adlo ® e i we have, for F € 'LT' and

. ' t 8
HYr)=r1i &,

r4 fs(F')’,::’. [fp (49 (F') ﬂ# (here p is not an intege

| ' '
Cr, writing R F = P(4HF ) ) and referring to (2, 4) we get

CORCLLARY (4. 7): R £°(F') x [RIF']T where for U€Cat T
t 1 ]
BRI (U =i (T, (U);F).



. | ' .
LEMMA (4,8). Letf €Hom(T,T)andF € 4.!. KT is flask,
t

50 is fSF.
Proof: Let {Uo( ~ U} €Cov T. Applying (4.5) (ii) repeatedly,
findf (U, X °*** x U 5 f(U, ) x *o= x £f(U
we find £ (Uy o) “E(Ua) (Us)

U £(u) £(U)
(where the map is canonical), Therefore

ik st'(UO( Xese x U = | 'F'G(U x*** x U )

(%v"'a%’ oUu U ‘Xn)-(o(o,---,oﬁ) % U U %

~J e 1
[ B o) x e d )
4".—(%,!..,%) ‘o) £(v) u°‘n_

This isomorphism commutes with the projection maps and so the lemma

follows from (4.5) (i) and the definition of flask,
COROLLARY (4.9), Let T £— T f— T'be morphisms of
|-
t opologies, and F € A’T' a flask sheaf. Then 27 is R9g° ~acyclic.
This is immediate from the lemma and from (4. 7) applied to g.

Since (fg) ® = gs £° we obtain ;

SPECTRAL SEQUENCE (4.10). T B~ T £ T morphisms of

R
topologics, F € 4.1 :

ERQ = RPSRYS(F) ) =5 R" (6)° (F) .
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1

In the special case Tl is the discrete category {X} (there is only

one topology), X € Cat T, and g is the inclusion map we have
;e ' t

’PQ" F =HP(T, X ;F) (F €di) and RP (fg)° F' = HP (T, £(X) ; F)
(F' € ,,’{;T'). Hence

SPECTRAL SEQUENCE (4,11). T ——> T' a morphism of topologies,
X€Cat T, Y =£(X), and F € 4.1 .

£ = wP (T, x;R1F° (F)) = B (T, Y;F) .

Mote: In case f is obtained from a map w: X' —2>> X of topological
spaces as in (4. 5) (so that Y = X') this is the usual Leray spectral sequence.
However, one needs much stronger conditions on f than those of (4. 5) to get
a spectral sequence relating Hq(T, ) and Hd (T', ) (cf. (2.2) ) in

general, For one thing, Lo £ °need not be isomorphic to the functor

L=¥a, )

DEFINITION (4.12): Let T be a topology, Y € Cat T. Define a
topology T/Y by Cat T/Y = (Cat T)/Y and Cov T/Y = set of families of

maps {Uo(-—-a>- U} over Y such that {Uoc———>- U} € Cov T.

let €:Cat T/Y —> Cat T be the functor “ignore Y", cis a

morphism of topologies and it is trivial that ¢%is exact. Applying (4.11)
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and taking into account the fact that (Y, id, ) is final in Cat T/Y we find

y)
(elucidating the functors (2.1) )

CORCOLLARY (4.13). Let T be a topology, Y € Cat T, and
€ : T/Y —> T the canonical morphism, Let F € 'J;T and
u-L. Y eccat T/Y. Then

Hi (T; U;F) x 1 ('r/Y; (U,f); <F) .
Inparticular;
H1 (T; Y;F) a2 HY (T/Y; (Y; id) ; &'F) xHI(T/Y ; &F)

|
THEOREM (4.14). Let f : T~ T be a morphism and suppose
(i) Cat T and Cat T' have final objects and finite fibered products,
(ii) f preserves final objects and finite fibered products (i. e. f is
left exact).

Then £ is exact.

Proof: e first show fp is exact. It suffices to show that the
’ "0
categories "‘V » V €Cat T (cf. 1. (2. 2) ) satisfy axioms (Ll1,2,3) dual
to(Ll, 2, 3) of 1. Section L,
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0
(Lt) If
(U, #5) Uy 8
.
(U, #)

is given in ]:fv,i.e. , a diagram

L .

in Cat T such that

v

y x
g f(U

- / 3)
f(Ul)
commutes, take the induced map

vV —> £ (U, l;(l U,) = f (U,) f(l);l) £ (U3)
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0 .
(L2) : Given (U,, ¢z) ____;' (U ¢l), i.e., a diagram

&
U, o

P

in Cat T such that the two triangles in the diagram

U,

P2

vV —Ls (U,)

\ 1
A

denote by K-—’-‘—-} U, the kernel of the pair (¢, B) of maps, i.e., Kis the

object making the diagram below cartesian

N
\/

(where the product U, X U, is over the final object), _
By assumption (ii), f(3¢) ——> f(Uz) f(Ul) is again exact, so there
exists a canonical map ¥ such that the dmgram



£(U,) commutes .

Hence we get (X,{ ) — (Uz, ¢z) which is as required,

(2) Given  (Upf,),(Upf,) take (U, x Up fy x8,) .

Now we claim that, whenever f is such that the categories
if (v €Cat T) satisfy (34, 2, 3)°, f_ is cxact: iet 0 —> F = 7 —s 7"
_Y,o be exact i /ST' and denote by C thc presheaf cokernel (F = F").
Eince fp is exact, the scquente ' o fp[o —, F!' e F e F"' w2, C = 0]
is cxact in ZLT. and so we have to show (pr =0. Let V &Cat T' and

% €f,c(v) = lim _ c(u) ,
(u,p)crs,

and choose { ec(u), (u,?) 616 representing %_(we are tactily using the
discussion of I. Section 1, notably (l. 3)). Since C" , and hence ct , is
the zero sheaf, we can find {Uy — U} €Cov T such that Z~+>0 in
TTc(u,). Consider the diagram

¢ 4 Ve

£(U) » £(U, ) where @ is the
composition.




In the functor Li, —> Lira( induced the map V<«— V,, we have

. of .
(U, #)~>(u, g,). Also, in I'Vo( there is 2 map (U, #,) <«— (U, ¥
givenby U «— U . Hence since gnM}O in C(U,) it follows that
§M->o inf, C(Vx). But 1V =——=>- V} is obtained by base extension
' — ——
from a covering, hence is in Cov T. Since § ~»0 in I £ C(v,)it
= +
follows 750 in C"(V), whence ct=o,

Section 5, Inductive limits for noetherian topologies, Let T be a

topology and ¢/, 4 the cdegories of presheaves and sheaves on T, Ifli
a category we write ¢t = Hom. . 1,6), /LI = Hom ., (1, 4). For
e @ h.m P is representable, In fact we need only take

[im ] 0) = Um [P (U)) lim : @ —>&is exact if I satisfies (Ll, 2)

(cf L. Section 1),

Let € /.KI and.lot P. lim F denote the limit in the -category of
presheaves. Clearly, (p. lim F)# = lim F represents the functor lim F.,
e claim if I satisfies (L1, 2) then lim H il —> 4 is exact. In fac"‘tw
writing I = -LL,,I\, as direct sum of its connected components, and )
recalling that AB5 holds in 4, one reduces to the case I satisfies- (Ll 243
Moreover, _l_x__rr; is certainly left exact since we have __1:_1Ln> =4 o pe lim o il
'I AI Coens @I) and all the functors on the right are left exact, So what
has to be shown is that if P € 631 satisfies D#I =0 (i,e., P * = 0 for all
i GI, whence P = 0) then P# = (_E’,P)* 0. But if ‘§ €er (U) is
represented by ;’ €r; (U) (cf. L Proposition (L. 3) ! ) then §’ ——>- 0 in

TT 2 (Uo( ) for some {Uot'"—>' U} €Cov T since P; = 0 and therefore



§—>01n H2Ux)

DEFINITION (5.1). Let T be a topology. T is noetherian iff, every
{Uy = U} €Cov T has a finite subcover, i.e., a finite subfamily of
{uy—> U} isinCov T,

Note that this is quite rare.

FROPOSITION (5,2). Let T be & noetherlan topology, and let Tf be
the following topology: Cat T = Cat T, Cov T = set of families
{Uy—> U} & Cov T which are finite, Denocte by 4, A the categories
of sheaves on T, 'I‘f respectively, Then 4= AL‘.

Proof: Obviously ,{fc: &f. letF € Af. We have to show that if
{uy —> U} €Cov T then F(U) - ker (|| F(Uy )'_"F(Uaé U, . =
Let {U'V — U} be a finite subcover of {U“—-+ U}. Then
F(U) = ker (]T F(U:, ) ; ). Since this map factors through the
'
canonical map ker ([T F(Uy ) T ) —= ker (TTF(U, T )it
follows F(U) S ker (]| F(U‘,()“*7 )s i.e., F satisfies (+) (cf. (L. 3) ).

Hence by (L. 5) ker (TI—F(Uo() ::; ) —>ker ([[ F (U'v ):?7 )

aend the result follows,
PDLOPCSITION (5, 3). Suppose T noetherian and I a category
satisfying (L1,2). Let F € 4% Then

(1) p. lim F is e sheaf,

(ii) If each Fi (i €1) is flask in Tf then lim F is flask in Tf, where
T 15 as in (5. 2).
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2roof: By (5. 2) we may assume T = Tf.

Write _Ie"_> =p. im F
and let {Uy —3> U} €Cov T be 2 (finite) family. Now it is trivial that

limm commutes with direct sums, Therefore

. . o) et e = - + N soe U
I ) "”(U‘xo U XU“h) (qo,.Q,%)r(U“o:r U “n)

o (@7 gy 3 V)

—l-irn-l?(g F(Udo Ul-. ;(J UO&)) [

Since lim is exact by L. (L. 4) the proposition follows immediately.
I |

CCRCOLLARY (5.4). Let T be a noetherian topology, and I a
category satisfying (L1,2), The functors Hq(T, U3 ) commute with lim_ .

Note that given F $ I e ,4{1 we get functors hq: ) (ib) by

£

hi(i) = H1 (T, U; Fi)' Since by (5. 2) we may assume T = T" and since

E2 (T, U; )may be computed with flask resolutions (cf. (4.4) ) we are

l-—¢ Fz—-—% ees

done by (5. 3) if we can find a resolution 0 ~=3> F s F
of the functor F such that F‘i is flask all g > 0, 1 €1I. In fact there exist
resolutions with I‘q injective, This can be seen without calculation as

follows: QI and /jl have all the axioms that 6), £ do, so ,& has enough

injectives and we take for F% an injective resolution of F. If J is another
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category and J -2-9»- I we get functors

P
601 <-'-2— !
NG

P
adjoint, which are constructed as with preschemes (cf. I, Section 2) (so
¢p(P) =P o). Inparticularif J = {i} is the discrete category, i €1 and
g: {i} ——=> Iis the inclusion and if P is a presheaf = element of 6){1}
then

.= ®- »
(ﬂp P)J I-Ioml(i, j)

Similarly, we get

s

I
—ws—""”

withf (F)=F o (F € ,g,l); and with @ = $f ¢ §_ oi’. Therefore if
f. 8 P
s€ A= zY/'*‘} we have

#_(5). = (presheaf © - 5)‘"’ = ® s .
o Hom (i,j) Hmin (i,3)
1

Since 4B5 holds in 4 it follows that #_ : 4 ——s- A 1is exact and

therefore that ffS carries injectives into injectives. Since §°F = F;
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in this case, we are done,

A special case of (5, 3), (5.4) is

CORCLVARY (5,5). If T is noetherian then
(i) "presheaf & F,' is a sheaf
i preshe 2, Fy, is a sheaf,

(1) HY (T, U; )commutes with ® .
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CHAPTEII NI, The étale Grothendieck topology for schemes,

Section 1, Definition, Let X be a prescheme and consider the

following topologies:

(£) Cat T}g = Category of preschemes Y/X étale, separated
and finitely presented.

f

Cov Ty = Finite families {Uy ~—= U} of maps which
are surjective, i, e, such that U is covered
by the union of the images of the Uy s ,
(0) Cat 'I‘g{ = Preschemes Y/X étale, separated, finitely

presented,

Cov Ty = Arbitrary surjective families {Uy —> U}.

(1) Cat 'I‘;{ Preschemes Y/X gta.le, separated.

Cov Ty, = Arbitrary surjective families {U, —> U} .

oah

(2) Cat T:z: = Preschemes Y/X &tale,
Cov T}Z{ = Avrbitrary surjective families { Uy = U} .

We refer to these as cases (£), (0), (1), (2) respectively, and we are

Primarily interested in cases (f) and (1), The definition of étale used



is that of SGA I¥, so in particular étale implies locally of finite
presentation, Notice that the maps in Cat TX have in each case the
properties required of the structure maps, and that Cat TX is closed

under fibred products (in the category of preschemes),

We have inclusions Cat Tgc s Cat Ty —E-> Cat Tgc 2 cat T}Z{

which are obviously morphisms of topologies in the sense of II (4. 5).
Denoting by A the category of abelian sheaves on T (z =f, 0, 1, 2),
we get functors ﬁ -z-y ,Xl Pa>/f,° 0( >—A whereo( is an

inclusion,

THECREM (L 1),

1 3

(1) If X is quasicompact then o>is the identity,

(ii) If X is quasiseparated then Ps is an equivalence of
categories,

(iii) 4 ® is an equivalence of categories.

Proof: (i) follows from II (5, 2) and the following
LEMMA (L 2). If X is quasicompact then T% is noetherian,

Proof of (1. 2): Let {Y, —> Y} €Cov T‘{. Ve have to show that

already a finite number of images cover Y, Since Y/X is finitely



presented, it is quasicompact. Hence Y is quasicompact. Also Y, /Y
is €tale, separated finitely presented., So we may assume Y =X, Now
one sées easily that an étale morphian is open, using the fact that this
is true if X is noetherian (cf, SGA IV, remark following Theorem 6, 6).
Hence the image of each Y, is open. Since X is quasicompact, we are

done,

To prove (11), (iii) we need the following

LEMMA (L 3), Leti: Tl < T be topologies (i a morphism) and

suppose
(1) Cat T is a full subcategory of Cat T.

(2) 1 {Uy—> U} €Cov T, and Uy, UECat T for
all o(then {ch'—">' U} € Cov T'.

(3) Given U€Cat T J {U, — U} €Cov T with
U, €Cat T, all .

Theni” : ’JT —_— A{’T' is an equivalence of categories.

Assuming the lemma, we are reduced to checking (1), (2), (3) for
P zlwith X qua siseparated in case ﬁ (1), (2) are trivial, r‘or (3),
recall that if Y/X is locally finitely presented then for every y € Y there
is an open V c Y containing y with V/X locally finitely presented and

Separated. For, by definition J V &€ Y and U c X affine with V/U finitely



presented (and certainly separated), Since U/X is obviously locally
finitely presented and separated, so is V/X., Hence if Y €Cat T}z: we can

find a Zariski open covering in Cat Tg,

.
£Y

Finally, if Xl is quasiseparated,
and V, U are as above then U c X is quasicompact, hence also finitely
presented and so V/X is finitely presented and separated, Hence the

Zariski open covering is in Cat Tg{ in this case.

2roof of (L. 3): Since the functors i°: ’dT o— ‘{T' and
i st Z;T' — JT are adjoint, there are canonical morphisms of functors
$iigi —> @5 anay:id g 0 — 1%t We have to show these are
isomorphigms. To show ¥ is an isomorphism we need to show for
e d o' s V E€Cat T that (V) <= iy F(V) = iy F(V). Now clearly
F(V) =i F(V) since (V, idy) s an initial object in the category L,
(cf. I, (2.2)). Applying the assumptions of the lemma, we find that the
coverings from.T of V are initial (final in the dual c ategory) in the
category of coverings of V in T, and since F is a sheaf on T' we find
ip F(V) -:.}—>. (ip (V) )#IE =i, F(V). So we are done.

To show  is an isomorphism we want isiﬁ G(u) —’\-J-_>- G(U) for

vuecet T, G 4.

' . .
Case (I): UGECatT. Then (U, idy) is initial in I;, so

ipisG(U)= Jlm_ °G(V) = lim G(V)-"%>G(U) .
(v, et -



Agein (ipis G(U) )# = isis G(U) <<~ G(U) because we only have to lock at

1
coverings from T and we have isomorphism there.

Case (2): U €Cat T arbitrary, Applying (3), we may choose
{uy == U} €Cov T with Uy ECat T'. Choose also for each pair
oy ’[J, of indices lv“ﬁ —> U, X Uﬁ } €Cov T with v"/s € Cat T'.
Then for any S € A, we have

TS(U xUﬂ)C——> || S(V
X RY

Hence in the diagram below the rows are exact. Since by case (1) the
two right vertical arrows are isomorphisms (the arrows induced by §),
so is the left one., This completes the proof of the lemma,

——a—

= =20 TT = =0 m—— = S
0 —— i i G(U) —=> || ik G(Ux) \ |1si G(v

l } &

0 ——s G(U) > [1 G(u,) e TewY

Dlp)

»
oc(s)

PROPOSITION (1. 4). The coverings in the cases (f), (0), (1), (2)

are universal effective epimorphisms in the category of preschemes,

e omit the proof, Cne reduces easily to the case || U —> U
faithfully flat and quasicompact (cf. SGA VIII Corollary 5. 3) .
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let v : { =~ Y be a morphism of preschemes, w induces a
morphism of topologies f(r ) = £ : T; — T;: (z=£f, 0, 1, 2) by
£(U) = U x ¥ for U €Cat Ty, .

Y

NOTATION (L 5). Assuming z known and fixed we write

category of abelian sheaves on T}z:

by < Ay s

& = Oz

category of abelian presheaves on T}zc

¢S
L = f
n* =fs
24 (x37) =0 (v%, X F) Y (TS 5 F) red,) .

Jince f preserves final objects and fibred products we have by
(1L (4.14))

COROLLARY (L.6). et g is an exact functor,

Suppose P = spec k where Kk is a separably algebraically closed

z
o

on the category of sets (resp. finite sets if z = 0, resp. finite sets,

field, Then T, is equivalent with the canonical topology (cf. L (0. 3) )
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finite covering families if z = f). In any case, A’P is equivalent with (Ab),
the equivalence being given by GM>G(?), G € J’P‘

DEFINITICH (L 7)., Let € : 2 —=> X be a geometric point of X,
i.e., @ = spec k with K separably algebraically closed, and let I’ € A/‘ .
*
The stalk of = at 2 is the abelian group F, = € F(?).

The functor Fm->F, is exact by (L. 6) and the above remarks. One
sees easily, moreover, that if f : Ty — T, is the morphism associated

to € then

%* s
€' F(@) =, F(?) =4, @) fe., Fp= L Lm  FV) .

Since (X, id-) € I{D we get a canonical homomorphism F(X) = Fpe

PROPOSITICON (1. 8). Suppose X quasicompact in case (f), and let
Fe /‘LX’ g €7(X). Then '§= 0 iff, the image of gin Fy, is zero for

every geometric point 2,

Proof: ==> is trivial. So suppose §'~vv>0 in every Fp, and let
x&¥., Choose € : P —> I lying over x, Since Ig, satisfies (L1, 2, 3)0
(cf. proof of 1I. (4, 14) ) we may argue as follows: There is some
U/x -GJ Cat T,, and 2 map ff : 2 —> U commuting with € so that
5"""%0 in F(U). Then the image of U on X contains x. Since this can

be done for each x, we can find {Uy—— U} € Cov T, (finite in case (f) )



with %””0 in [ F(U x)» Therefore £= 0.

PROCXPCSITICN (L 9). Let F be a presheaf on Xy P—> X as above
a geometric point, Then £ F(P) ~ £ I‘#(D) 2 I‘# » Where the

isomorphism is induced by the canomcal map F eees- I‘#IE

The proof is essentially obvious, For instance, to show the map
surjective, let .§ €£ I‘*(’D) be represented by § € I‘#(V) for some
fsPeV commutmg with €, Then there is a {Vo(' — V} G Cov T,
and §' CTTF (Vo ) representing § Since || V‘x—-b—- V is surjective
we can lift # to some map Fot P Vo Let %ocbethe ath
component of§ » and choose {W —— Vd} €Cov T and §' GTI— 15"(W@ )
representing §o< . Lift ¢°‘ to some ¢€ $ P s Uﬁ' and let '5"
be the é th component of 5 Obvxously the irnage of g’ ﬁ

7(™) (obtained with respectto (:.‘3 ’ ¢(3 ) Gl‘__,) is mapped onto f

Section 2, Relations with a closed subscheme. Throughout this

section we assume we are in case (1). Leti : X —=3> Y be a closed

subscheme and let & € /L .

DEFINITICN (2.1). F is zero outside X iff. F(U) = 0 whenever
=@,

Clearly i, carries r& into the full subcategory A y ©of /‘(’Y consisting

of sheaves zero outside X.



THEOREM (2. 2). The functor 4. —3 {. induced by i, is

an equivalence of categories,

Proof: let €: T;{ c Ty, be the full subtopology (i. e., all maps
and coverings) whose objects are preschemes V/X where V=VvxXx
for some V € Cat Ty, Ve claim T;= satisfies the conditions of ¥
Lemma (1. 3) and hence that we may repla.ce T, by T;{. Condition (iii) _
is the only nontrivial cne. Let z/X € Ty 2 € Z. By definition of etale,
we can find z €V ¢ Z, U € X affine with V — U and affines V /U, of
finite type over spec Z and maps E—> UO’ V — Vo ){’U We may
assume U = U x X for some affine U c Y and then we can choose U—> U,
andTJo = U, closed, with U, of finite type over spec Z Let z, GVO
be the image of z, We are reduced to the noetherian case, and it follows

easily from SGA I, Theorem 7. 6 and Proposition 4. 5.

Replace Ty, by Tx and let f : TY — Ty be the morphism
f(U) = U xX. Ve want to show £° induces an equivalence ©: /L —— J’Y
The adjofnt functor fo s Af/ — ix is obviously obtained from f by
restricting to /S'Y » 80 we have morphisms §f : f, £ —s 14 A’,
Y:eia A/ — 0 f, which we want to show are isomorphisms. Actually,
it will appear that f |/.£ is the adjoint since fpl" is a sheaf for F € ’dY‘

wen [ § . -an
letVET,, , V=V XxXwithV € T and consider the category
{9 Y

) =l | very , #rUxxe—



We claim that the (U.. #)s in quv with ¢ an isomorphism form an initial
subcategory, In fact, if (U, ff) is arbitrary then (U, ) < (V ;U, iy ¢)
(identifying V x UxX with V X (U x {) ). Write U= U x X, The graph .
r gt t V V X UYis open and closed (SGA IX, Corou:ry 1. 6 and above),
hence we may write V X U = [ Awhere ¥ -2 [.1 In the map

v x U—s V x U (whxch is a closed immersion), /\is mapped onto 2 closed
sut‘zset. Set ‘.-IY=‘ UxV=A, ThenW € Ty and we get a map

(U, ) — (W, (% )Ywith ¥ an isomorphism.

Next, we claim that for F € 4y , V €Ty , F(V) —> £, F(V)
. P
is an isomorphism, where V = V X X and the map is given by
. Y . .
(V, 1) €15, . This is trivial 1f V x X = 2 Since (L1,2,3)° hold
Y .
in I-fv (cf. proof of II (4, 14))and by the above discussion,we may replace
va by the category of pairs (U, #) in which ¢ is an isomorphism, and
then it suffices to show F(U) i F(U') for (U, #) & (U'. ¢') (and
g, ¢' isomorphisms), View U = U x X as a closed subscheme of U,

Y
[] -
Since § is an isomorphism, U covers U and therefore covers some open

set containing it, Hence we may separate the two cases
(1): U cUis an open subset.
1 t
(2): U ——= U surjective, i, e., {U ~—- U} €Cov TY .
" - t 1"
Case (1): SetU =U=-U, s0U ULl U ——> Uis surjective. Then

v xx = @), hence F(U ) = 0 and we are reduced to case (2).
Y
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Case (2): Consider
pl
[ § ] L]
Ue—m U “— v xu ,
¥, U

and let A © U x U' be the image of the diagonal. Ais open and closed in
‘ U

] $ § ]
U xU , 80 we canwrite U XU = Ail /.. Since f and § are isomorphisms,
U .
U XX~ UxX. Therefore U XU XX 22U x X, and since

Y Yy U Y Y
certainly A XX —=> U xX we find A XX =@, Hence F(/A\) =0. But

- Y Y Ty e Yl I, .
P, = Pz on 4. Therefore F(u) > F(u :(JU ) is the zero map and since

F is a sheaf, F(U) ——> F(U') as required,

. man L L]
Now it is clear that f \F is a sheaf, For, if {Vy —> vV} €Cov Ty,
\70( & V“ )&X, V=v )&X » we may replace -\;'OL by isomorphic elements of
- - — t
Cat T;;, say V‘:(_ so that Vo; ——> V is induced by a map V, —~ V. Since
{V;l} cover V, they cover some open neighborhood of V. Hence we may
assume {;;0( — V} is induced from a covering {ch —- V} €Cov Ty.

Since I is a sheaf we are done,.

The fact that ff : £, £ —> 14 g ~and T ag —> £0 £, are

isomorphisms is now immediate.

By transitivity of equivalence we have:

COROLLARY (2, 3). The functor of Theorem (2, 2) is an equivalence
of categories in case (2), and in case (0) if Y is quasiseparated, and in
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case (f) if Y is quasicompact and quasiseparated.

Let for the moment aafm ¢3be any left exact functor, (1, 43 abelian
categories, Construct 2 new category C as follows: Ob € = set of triples
(B,A, ?) where BC @3, A ca,, ® CHom (A, f(B) ). A map

3 ip Sa

(B,A, P) -—-*;—-(B,A, ﬂ)isapairB———>B and A 22 A of maps

such that

A —2 o gm)
EIN l £( §B)
[ ]
t t
A—2 __ueB)
commutes, Using the fact that f is left exact one verifies easily that

€ is again an abelian category. € inherits most properties enjoyed

by @, &3.

There are various functors relating (2, 47, , notably the six

PR ol
*x

a . SRR 5 B
IR L 3%

defined as follows:
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i*: A<r(B,4,0 ji t (B,0,00¢~B

j* H (Bppr) ~>B

ig: A ~w>(0,A,0)

i’: ker § <-(B, A, ) jx ¢ (B, £(B), id)&~B

We insert for reference a list of obvious properties:
(i) A given functor is left adjoint to the one below it,
. L x ., .1
() i, i,, j, j, are exact, j,, i* are left exact.
. & %, LI S,
(iii) IJ*=f,iJ!=iJ!=IJ*=Jl*=O.
*
(iv) i, Jj, are fully faithful and for CC £, j C = 0 iff CxizA,

some A € Q..

PROPOSITION (2.4). Let

be abelian categories and functors, Suppose the functors satisfy the

following conditions:

(i) i* (resp.j‘f) is left adjoint to i, (resp. j,).

e R
(i) i, j are exact,
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(i) i,, j, are fully faithful,
(ivi ForCE€E,j C=0<4=> C=i,A, someACQ.

e
Set f =i j,, and denote by ¥ the category of triples (B, A, #) as above.
Then € is equivalent with &.

To be sure, the equivalence 'preserves' the given functors, Since

Jy has a left adjoint, it is left exact and so f is left exact.

Proof: Note first that for CE €, C =0 iff. i C=0andj C = 0,
For, say j*C = 0, when CHi A some A € (U, Since i, is fully faithful,
the canonical map i*i*A ~—> A deduced from (i) is an isomorphism. So
if also i*C’,t,’ i*i*Az 0 then A = 0, hence C = 0, Since i*, j’l= are exact

[}
we conclude that a map € : C —> C in 7 is an isomorphism iff,

* %
i (€), j (€) are isomorphisms,
LetC € E be arbitrary. The adjointness properties (i) induce a

commutative diagram

i C «—— C

|

. %, . . %
l*i_]*_] C—«-——-—J*JC

¥

and bence a map C ———e--=>- (i*i*C) ;‘( . (j*j*C) .
G1u"0)
L
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We claim € is an isomorphism, and we need to show i*(e), j*(e) are
isomorphisms. Both functors i*, j* are exact by assumption and
therefore commute with fitered products, Since i, is fully faithful,

i* ¢ — i"1,1"C is an isomorphism for all C € &, hence the horizontal
arrows of the diagram become isomorphisms upon applying i*, so the
square certainly becomes cartesian. Applying j’l= to the diagram we get
zero on the left side by (iv), and j*C = j*j*j*C because j, is fully

faithful, so again the square becomes cartesian and we are done.

This argument applies of course also to the category ¥ of triples,

so we have (B, A, ) ——> (0, A, 0) X (B, £(B), id).
(0, £(B), 0)

Therefore define a functor F : E > by C M--~>(j*C. i*C. )

3 L
where § : £'C —= i'3,3"C = £(;*C) is induced by the map C —> j i C,

and define G : £ —>& by (B,A,9) ~>i,A <X  j B. Itis immediate

) iJ i,B
that one obtains an equivalence of categories.

COROLIT.ARY (2.5). Leti: X —= Y be a closed subscheme and
set U2 Y« X, j: US> Y the map., The category /‘ﬁY of sheaves on Y
is equivalent with the category of triples (B, A, §) where B € iU'
AGC 4y and p: A — i,B,

For, if we set (. = /‘[’X' @3 = /&U' €= A’/Y in the above proposition
then condition (i) is satisfied by definition, For (ii) see (1.6) and for (iv)
see (2.2). Condition (iii) for i, follows also from (2.2), and for j, we

need only show B = j*j*B, Bc 4 . This is clear (see for example
1.(2.8) ).
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!

In this context the functor i* associates with a sheaf on Y the
subsheaf of sections with support on X, and j, is the extension of a sheaf
on U by zero. This interpretation greatly facilitates the calculation/ of

the usual exact cohomology sequences for closed subsets, for instance

we have immediately
EXACT SEQUENCE (2.6). For C ¢ dy
% . ¥

00— §1j C~>C—> i i C—> 0
which, read in the category ¥ is

00— (B,0,0) e (BlAl¢)-_> (O,A,O)—-—b 0 .
We also have a left exact sequence

! *
(2.7) 0—> i i"C—>C—-jj C , cc &,
If C € ¥ is an injective then the last arrow is in fact surjective (say we
work in ¥, assuming &2, @& {hence £ ) have enough injectives). For, if
[} t t [}
C is injective, 50 are i i’ C and j,j C. Hence C 7 i,i’ CXC with C
t "

also injective and j*j* C qgj*j* C'. Therefore j*j* CxC XC ., But

- x t % e
since j, is fully faithful, ' C —= j jui° C~j C'XJ*C’ isean

%*_te
isomorphism and so j C = 0. Since also
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' " E SRV TN . KA1
CXC Ry C—> joJ JuJ CRjyj C Xj,j C

"
it follows that C = 0 and we are done.

Therefore we obtain an exact cohomology sequence
! L)
cer —>RY4I") C—s RI1AC — RYGj)IC—> .. .

We have R9 1d = 0, RYi, 1) wi,RYU* , RYj,3") 2(RY,) §", end so we find

[}
i, R ' C v coker (C— j,5"C)
(2.8.1) or
R} 1! (B, A, 0) 2 coker ¢
(2.8.q) i, R9i'c x@®IYGi"c , q>1

#* *
or, since i'i, 2 id . andi® RY, x RYi"j, = RY

a

(2.8.q) Rei' (B, A, 9) ¥R E(B) , q>1 .

Note that qu* (q > 0) has always the form (0,x,0), i.e., in case of the

closed subscheme Y - X=U -L—>- Y, the sheaves qu*B are zero
outside of X (q> 0).
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Let F : £ —>{Jbe a left exact functor ({3 ancther abelian category).
Since for C C € injective the sequence (2. 7) is exact and consists of
injectives, we get an exact sequence 0 — F:i,,,il (C) === F(C)

— Fj§" (C) —> 0. Therefore for arbitrary C C £ we get

EXACT SEQUENCE (2.9).
*
cer —> RY(Fi i') € — RIF C—=RI(Fj 37) C —> -+

NOTATION (2.10). For X ——> Y a closed subscheme, U = X - Y,
ce AJy, we write

CHYL(v,0) = B0 (x, i' ¢) = ®O(y, 14! ©)
Bl(y, )=rAIE(x,i ))

Hg{ (Y, C) is the group of sections of C with support on X, and
Hgt (Y, C) is the relative cohomology. Of course, there is a spectral
sequence relating H‘}l{ (Y, ) with qu' . Taking into account the fact

that\j*\ is exastr-and carries injectives to injectives, (2.9) reads

I

RELATIVE COHOMOLOGY SEQUENCE (2.11).

res —s HY(Y,C) —s HI(Y,C) —> HI(U, j C) —s +== .
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This should be contrasted with the exact sequence arising from (2.6), viz,
. oee q & q q ]
(2.12). -—> H? (Y, j!J C) =2 H?*(Y,C) = H?* (X,i C) —>¢--

Since Jl does not in general carry injectives into injectives we can not

Wl.'lteH (Yp Jlj ) = Rq(H (Y,:hj ] )) L]

For the sake of completeness, we note that a left exact functor
F : £ —>induces functors F_: Q —>/Dand Fy t @ >4 left exact,
by F_ = Fi, , F, = Fj,, and a morphism Fes Fy ~—> Faf by
*
Jg B—> i,i j, B = 4.f (B). Since F is left exact, it commutes with

products and therefore we have for C = (B, A, ¢) € £ a cartesian diagram

F(C),_ F(C)
YN
Fi(A)  Fj(B) = F_(A) F,(B)
/ F w)\ / (B)
Fiyi'j,(B) “(€(8) )
F

Hence F can be recovered if F a —£—> be are known., Thus for instance,

if we are in the case of a closed subscheme X -i--> Y, U= Y - X, the
section functors FV (cf. II (2.1) ) for V € Ty are determined by the

functors FV % x ©B A"X and [ v § y °n A’U and by the canonical morphism

a*x
Foyu —>Hrxx T -

Y Y
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Section 3. Passage to the limit. LetJ be a category. Recall the

following definition: A pseudofunctor C : J — (Cat) is

(a) amap© J —>> Ob Cat ; j/w\é—Cj .

f
(b) amapFL J~—— FL Cat ; i-f:—-wjmurci-ﬁ-a» Ci .

(c) Fori-E- } --f—>— k an isomorphism of functors

°t, g *f.8 — (fg),,

n

such that c. id = Sid. £ = id and ifi-l—(—p-j—g» k—£->,e are three maps
» »

then

o (f% ¢ * h)

©f, gh b = “ig,n°s g

(notation as in Godement).

Let D : J —= (Cat) be another pseudofunctor. A morphism

F:C——=Dis

(a) for j € J a functor Fj:Cj——e—Dj .

(b) for i ——- j an isomorphism of functors F,.: f,0 F, - Fj o £

such that for i~ j £ kinJ

F a7l ]

ng = cfngFf g 6,8



The pscudofunctors and morphisms J —>(Cat) form a
category. Let X € (Cat), and dcfine the constant pseudofunctor
const., = ¢, 2 J —> (Cat) by (c}()i =27, fcz = id,, , (c }S) f,g =id .

It is clear that a functor II — Y induccs canonically a morphism

Cor = cY .

g

DEFINITICN (3.1): lLet C ¢ J—>(Cat) be a pseudofunctor,

Ve define a functor lim C: (Cat) = (Scts) by
arAA,

[ E.T.l Clx) = Hompsfnct (C,cs)

with the obvious maps,

e assume J satisfies (L1, 2) of I Scction 1 for simplicity
(Tor a more general discussion the read_er may consult SGA VI).
The point is that _lle;t}C is rcpresentable, i.e., there exists a
category _l_i_E:’C = C , and a morphism of pseudofunctors C -I-‘+

const ~ such that by composition with L.
—_—

HomCa.t(g» y l) = Hompsﬁmt (c, cx) =[ 12 C] ().

. _C_} may be constructed as follows: S.et b G = | l ; CBC, .
For U,V €Cb G we have to define Hom (U, V). Say U€Ch C; »
. -
V& Cj and denote by i,j \ J the category of diagrams
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whecoe 8 mMap

i\k S i\ K
i— i

is a map k= k' such that the resulting triangles commute, i,j\ J
satisfies (L1, 2, 3) (cf. 1 (L. 7) which is not stated with sufficient

generality). Define a functor H(U,V) =H :1i,j\ J —> (Sets) by

TS mrrrsns Homlg (U), g (V))

J g'

and for

g
\-‘k —> 2 let Hom(g, (U), g c(V)) —--.-.-‘l-l» Hom(fg (U), fg (V)
i

be defined by the functor £_and the morphisms c¢ s C . 1.
! c & . f,g’ f,g

Specifically, for § GHom(gc(U),g::(V)), we have

HILNG £ § v ) V) =5 0) = L (0D



This gives indeed a functor and so we set

Homg(U,V) = UmH = 1i_m_>H(U,v) .

The composition of maps in _C“> is self explanatory, and one gets

functors L. : Ci —> G Dby the inclusion on Ob C; and the fact that

e

< .
{ = ' € Li\7 .

Together with suitable isomorphisms Lf these give the morphisms

L:C—>const o . Ve omit a few pages of tedious verification.
-

Similarly, we define a pseudofunctor T : J—= (Top) (cf. U (4.5))

to be a pseudofunctor of J into the underlying categories of (Top) such

that the morphisms are in (Top), i.e., T consists of 2 map

Cb J —~—— Cb(Top) G~ Tj) ’
2 map
F2J—s F1(Top) (f---->ft)
and isomorphisms t o g —> fg, with the samc axioms as above,
f,g "'t t
A morphism F : T —> T' is a morphism of the underlying pseudofunctors
Cat T, Cat T' : J—>(Cat) such that for i € J, F, : Cat T; —> Cat T;

is a morphism of topologies. For I € (Top), set
[%‘,’ T ] (xX) = Hompsfﬁct(T' cx) ’

so that lim T is a functor (Top) —= (Cets) .
—

AAAAN



PRCPCIITICN (3,2): Let Jbe a category satisfying (L1, 2),
T : J —> (Top) a nseudofunctor and supposec for all j €J that the

covering familiecs of Tj are finite familics. Then lim T is representable,

Proof: Set Cat T =lm [Cat T] where lim [Cjat T) is aa
above, Let {U‘X -'-"—o-(-a> U} be a family of maps of Cat 3 s Say
Uy €CatT, , U€CatT, . Put{Uy —> U} inCov T ifitisa
finite family anfl if there cxists j €J, maps i, -g-l-‘-> j and i ~B= j
and elements § o € Hom(g, (Uy )s g(U)) representing E . such that
{gy Uy ) =y g(U)} € Cov T;. Itis clear that with this definition
axioms (1),(2) of I (0.1) are satisfied, i’e have to verify (3). 5o let

{u XU} €CovT , V—=2>U €CatT . Reflecting 8 moment
ol - -

on the construction of Cat '1‘) one secs that we may rcplace the objects
and maps by an isomorphic situation so that U, , U, V € Cat Tj for
some fixed j, so that ﬁa » ¥ are represented by maps f,,, J in
Cat T;, and so that with these maps {Uy == U} €Cov T;. Then

Po(z> V} €

since T, is a topology U, X .V exists and {U XV
J o3 : (24 U
Cat T i1s in Cov T . It remains to show that " U_ x V" is the
- - . 124

U
product in Ca..t 3, i.e., that for WV —> U € Cat £ ’ HomU(‘.'!, Ux :cJV)

N I-IomU(‘:'.' 2Upn ) % HomU(W » V). For this purpose we may assume
furthermore (fixzing W and replacing by an isomorphic situation) that
*I € Cat T.i and Y/ —b U is represented in Cat Tj « Thus the desired
fact follows casily from the commutativity of l_;_xa) with products

(cf, I Proposition (1. £)) and the following



LTMMA (3,3): Let = = Us&— V €Cat T;. Then

T ' ~ '
Hom«l‘;" (575 V) <oem fllm . Homft(u) (ft("-’-'). ft(V))

j —— k& \J
where the maps W —>U«~ V in Cat T are represcnted by the given

ones in Cat T.i and the functor j\J —> (Scts) is defined as before

(although j\J £ §, i\J).

The proof is routine.

Hence I is a topology, and it is clear that the functors
L, : Cat T; —> Cat T arc morphisms of topologics and that (Z’, L)

represents lim T .,
PN,

Let T : J—= (Top) be givenand fix 0€J, F a presheaf on
Tg. For 0 ~£5> j in J we get a presheaf (gt)p F on Tj , and using
the functor L, : T, —> T we get a preshecaf F = (Lo)pF— onT , We
have, for UECat T , o (U) = ._lin_l)Lo F(X) where Iiao is the
(X, g) 1
catogory of pairs (X,§) , X €Cat T, , § €Hom,, (U, X) (cf. I(2.2)).
—

Gay U was in Cat T . Then for

0~_ &
\5 € 0,i\J
i/g:’
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we have

[e). 7] g (u)) = _lm, F(X)
e &,

where the umit is over (4., g j) €I '(U) (the category of pairs (.n., g j) ’

f
> k in J, Define
X €Cat T, ¢j € Hom (gt(u), g, (X)), Suppose j

a functor

g . .
(3.4) T IEE(U) m— Ing(U) by (Xlﬂj) n—> (xaﬂk)
where

: -1
by = tg, %) < 50 oty (9

and by the identity map on morphisms, One obtains in this way a
functor 1Iy;: 0, i\ J ~—>(Cat) carrying

o\gh B¢
j nenn? ¢ 8{ (v)

i g

L
and it is easily seen that -l-i—“LIU -'-"--»IU0 (where the Bg; is in the
sense of honest functors, not pseudofunctors).
The case in which we are intere_sted is the following: Fix a
topc_)logy T, with finite covering families, and a category J satisfying
(L1, 2,3). Let V3% CatTbeafunctor (i ~>Vy). Ve
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suppose that for i,j €J products of the form Vi x U, Vi x U exist
for U€Cat T, and hence obtain a pse_udofunctor J 13— (Top)
by iwe> T/V, (cf. II Definition 4,12), and for i——sj letting
f,: T; —> Tj be the functor U/Vi At U %(fi Vj/Vj . The f 's are
morphisms of topologics and the isomorphisms tf,g are given by
formula (3, 3,9, 1) of ®GAI for fibred products. To avoid overloading
notation we denote a.ls_o by J the category obtained from J by adjoining
an initial element 0, and we extend T by sending 0 #e~> T with
Ty -——ﬂ--za-Ti defined by U ~~> U X 'Vi « The topologics Tj all

have finite covering families and so im T = T exists,

e,

et as above L0 : T0 ——)-.'_I; be the functor and for a
i = e 4 = w g
presheaf on TO write E = (Lo)pl » Fy (;_:,vt)p T for 0-—=2= i,
Notice that 0, i\J is canonically isomorphic to i\J.

THZORZTM (3.5): Make the above assumptions and notations:

(i) Let U &€ Cat T, say Uis in Cat T;. Then for anpreshofif

F on T0 »
=(U) o~ Ulim Fi(gi(U)) =~ lim F(ux Vv.).
- N e '8¢ —_— b ]
i B ja\J j—>jeiNy Vi

(i) If ¥ is a sheaf then [ is a sheaf, and if F 1is flash so

5.
2

(iii) The functors (Lo)p and (Lg) (L.o)p | ,5,0 are exact
( /LO = sheaves on TO) .



(iv) X F is a sheafand U € Cat T then

T, U;E)x lim Hp(Tj, UxVy, 7)) = lim HP(T,, U XV, 3 F) .
jed jeJ

Proof: e have first to e:_:plain the categories over which
the limits are taken, To begin with, note that for i —-f--b j the functors
(it)p has a very special form duc to the fact that f, has as left adjoint
the functor €: U/Vj ~a~> U/V, (by composition with Uj —> U, ).
In fact, by I (Z 8) we have canonically (f ) ~€P . Thus if the
functor i —g-p joar>»FUXx V j) is defined in the obvious way we
obtain also a functor i -E-»Y A>T (gt(U» and so an isomorphism
of the limits of (i), This second functor is the same as the one indiwwed
by (3. 4). The second isomorphism of (iv) is clear from II (4, 13) if
the functors are defined using those of (i) by universality of HP(ab, 0\J =1}

and the first isomorphism of (iv) will be trivial if (i), (ii), (iii) are
known,

Revert to the notation of (3. 4). The categories iz(u) satisfy
(Ll. z 3)° , indeeq, they have initial cbjects (cf. I (2.8)), and it
follows readily that II;° also satisfies (L1, 2, 3)° This proves (iii)
(cf. Proof of 11 Theorem 4.14). The functors (I gi';(U)) — (Ab) ,
((x, ¢j) Nl:f\é F(X)), are clearly cbtained by composition with the

functor IUO — (Ab), (32, @) ~>E(0)). Sa to completa the proof

of (i) one has only to check
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LEMME (3.6): Let C : B —2(Cat) be a functor, suppose B
and the C, satisfy (LI, 2, 3)and set G = lim C, let F:C —> D be

a functor and define F, : Ci —3 D by composition,  Then

lim (lm F, |-——> lm F .
B¢ C
—

To prove (ii), let ¥ be a sheaf, and {UO(-ﬂ; u} €cCov ".L .
There are finitely many ¢ , and so we may replace the objects and
mapse by an isomorphic situation so that the Uy, Uare in Cat T0 and
the maps are represcnted in T with {UO( —» U} € Cov Tq - Then
we have for all Vj ’ {Uo( X Vj --—>Vj} € Cov To . Hence since F is

2 sheaf

F(U x Vy) -—->1‘;T F(Uy % V) —= T F(uy x Ug X V)

F(U x V) —> @ F(uy X V) S @F@U, x Ug XV

is exact. Since lim commutes with @ and is exact for (L},2, 3) it

follows from (i) that E is a sheaf. Tho flaskness is obtained in the

same way. (Cnme can also show E 1is a sheaf of sets if ¥ is by

using I (L 8)instead of 1] = @ ).

Now let X : JO —-i-.(p_reschemes) be a functor (j ~> Xj) .

Assume still J satisfies (L1,2, 3). Denote by Sy = Sj the category

3
of preschemes over Xj separated and of finite presentation, Given



i~—>j, so that Xi(-— Xj » one gets a functor S; -->Sj by base
extension, and hence a pseudofunctor S : J ~>Cat (j~> Sj) . i

for all i—>j in Jthe maps X, <« }{'j are affine, one can show that
Jim X is rcpresentable in the category of preschemes, and affine over
the Xj Is , Let 4}5 = l(_x_'m H{ and call .'i?-,: the category of preschemes

over <}_{ separated, of finite presentation, Base extension to 4}_! yields

a morphism S —-const., of pseudofunctors, hence a functor

ey
£

Lo
Hm 5 > 5.,

[ ]
>

THEOREM (3, 7 ): Let X ¢ 3% —» (preschemes) be a functor,
J satisfying (L.1,2,3). Suppose that for j € J, Xj is quasicompact and
Quasicgparated, and that for { —> j in J the maps }:ie— Xj are affine.

Let_?; =lim X, Then with the above notation the fanctor lim S "’“Sx

i
is an equivalence of catcgories.

The proof will be in EGA IV (if J is inductive, which is
enough for the applications),

Let T.i be the case (f) topology on Xj » Ty the case (f)
«
topology on 4'4'_{ . One obtains in thc same way a pscudofunctor

T :J—(Top), (jrrrn> Tj) and a morphism of topologies

lﬂ_n_)'l‘-%'llzs .

THEORIEM (3, 8): Make thc samc assumptiona as in (3, 7).

Then lir_l:! T 2> '1;25 is an equivalence of topologics,



= -an by an equivalence of topologies F 3 T.~—>"7, =

motrphism which is an egv- - .- wawpgories Cat Tl ~> Cat T,y
and such thas ~ samily {Uy —> U} of Cat T, is in Cov T, if and only

3¢ { #(Uy ) ~>F(U)} is in Cov T,. It is clear that an equivalence

induces equivalences on the categories of presheaves and sheaves,

Proof of Theorem(3, 8): Cat T; is a full subcategory of 5
and Cat T,, is a full subtopology of Sy . Hence Cat lim T isa
¢-
full subcategory of lim S, Gince obviously the morphism lim T -—>-Ty
™ <~

is induced by the functor lim S = Sy which is an equivalence, we

[
know anyhow that Cat ig T —Cat Ty is fully faithful. Ve have
alf
to check

(a) Given U€cCat 'I‘:,:,aj e, Uj € Cat 'I‘j and an isom.
<

(b) IF {U~>V} €Cov 'rx then 3j€3J, {U -z»vj} € Cov Ty
and isomorphisms Uj X n. 2 U, VJ ;({ X xV which
commute with the induced maps, (Since the covering
farmilies are finite we have replaced {Uoc —V} by
the single map | | Uy =U—V,)

To show (a), one reduces readily to the case X; = spec A, ,
<§_£ = spec £Lb s U=spec B afﬁne.’ Then choose Bi/Ai finitely presented,
some i, so that B A 7 B, and set B, = B, A, for i i .

A theorem of Grothendieck guarantees that B j/A 3 is flat for some j.



We need B /A etale, i.e., we have to show o =q} i = 0
BJ/AJ
But since B, /A is of finite

type, sois n (as Bj-module) ¥e havc rlB/A ~ Q‘i 2i§>

. If { Uv} are a set of generators for

for some j (a.nd we know ‘OB/A =0).

~, 11m 52 ® AJ
.\'211 » so that {u‘,® l} generate nl it is clear that these elements

must be zcro for some j, as desn'ed.

To show (b), let U ~—> V'be surjective in Cat T}‘ , and
choose i, U; — V, in Cat T; with (U — V ) X 4}_{ =~ U —->V using (a).

Since U, >V. is étale, finitely presented, the u‘nage Vi of U is

open in Vi . One sees easily that 'Vi —--b-Vi is also finitely presented,
~J
Let?f =V x 2_1 o« Clearly V=V, hence

Lne

1

so Ui -->AVJ €Cov T,.
i i
~J
replacing v by V; we are done,

COROLLARY (3.9}t Let X be a proscheme, X : 3® —>cat Ty

G ~> ‘s.) a functor, where the topology is any of the cases (f,0,1, 2).

Suppose the : n.j quasi compact and quasi separated and that the maps

X e Xj are affine, Supposec finally J satisfies (i1,2,3). Let

X = }_x'm X and for a sheaf I on X, , lot F; 5 E be the sheaves

induced on X, resp, X . Then

y‘_zl.‘b Hq(xi, Fi) —_ I_Iqe’:'.l.:) .
J

Clear from (L.1), (3.5), and (3.8). Notec that if : X —>X is the
*

Nl

map,'g;:tr FEN
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cection 4, Hensecl rings, We include for convenience some

basic facts on Hensel rings, Most of the results and proofs arc taken

from papcrs of Azumaya (A) and Nagata (N),

Let A be a local ring, M its maximal ideal, Consider the
category =(A) of rings B local over A, B obtained by localizing an
A=algebra of finite prescntation with B/A étale and B/#4B = A/ mrA,

This category is an inductive system (cf, SGA I, Corollary 5,4), Set

N (]
2 = iim B .
BEE(A)

is naturally a functor of A, Clemrly A is local, A/A is &tale, and

>l P

/& % Afme A, R has the following property:

o~ ) - ) ~J
(4.1) If B/A is local, etale, localized from an A-algebra
of finite presentation, and if B/M/l» B~ A/MArA then

[l. f\l&d.

Or, equivalently,

4,1) If £€A[t] is monic, and if & €A/AL & is a
simple root of the polynomial ‘f GK/A«&\‘; Alt] (the image
of f ), then f has a simple root a inducing =.

To see that (4.1) == (4 l'); set B = (K[t]/f)(g

( is the maximal ideal induced by the root a of T . Ve get

where

~
B X A, Hence the image of t in B yields the desired root in A .



For the converse, use SGAI, Theorem 7, 6 to write B X (X[t]/f)‘g
where f is monic and %-is a max%mal ideal over /i-(the theorem
extends to the non=noetherian case, if finite presentation is sub=-
stituted for finite type). Obviously B/l B < A/ A means T
has a simple root. Hence f has a simple root inducing it and one
finds X[t]/f A xC for some C, so.B ¥ A, Itis now clear that

A has property (4.1'),

~F

THECREM(4,2): If A is noetherian, sois A,

This elegant proof is due to Nagata (N): Clearly A//Wb-nA
~, A nﬂ. ~ a -
~ Af/MTA, hence A and A have the same completion A, Since
A is a limit of noetherian local rings (which are separated for the
) ) ~
M =adic topology), A is separated, so we have A cA cﬁ. Cne

uses the following criterion for noctherian rings: every ascending chain

R Ol'i € -+ of finitely generated idecals becomes constant,

N ~
Since A is noetherian the chain +++ ¢ O Ac -+« of ideals of A
becomes constant, hence the chain *++ ¢ O{i N nK’g s+ becomes

~J
constant. So it suffices to show OTANA = (K for finitc.ly ncncrated
ideals O{ ’ and it is obvious that O(IA n A_? Ur. Let {al 2" an}

~J
generate (, andlet b€ (ANA, Choose B/A €E(A) so that
2,""*ya_ , bEB and set Q{0=(al, cee a.n)B. Since B
. A A
is noetherian with completion A, it is well known that OTOA NB = 0.
But OTOIAnB= AZNB contains b. Hence b€ (X, and so
b€ O,



THEOUREM (4, 3): Let A be a local ring, M- its maximal

ideal, A = A/Mt A, The following are equivalent:

(i) If £ &€ A[t] is a monic polynomial such that its image
T inA[t] has the form F=gh with g, h monic and
(g,1) =1 therc ckist unique monic polynomials g,h € Aft]
representing g,h respectively such that f =gh, (g,h) = L
(ii) JEvery finite A-algebra is a direct product of local rings.

(iii) A (=A) has property (4. 1).

(iv) Definition: A is a Hensel ?ring,

Proof: (i)==> (ii): Let B/A, finite, be given, and
decompose B = B/ B (which is finite over the field &) into a
direct product of local rings, We have to find a corresponding d_ec ompso~
sition of B into a direct product. So if € is an idempotent of B, we
have to find an idempotent of B lying over €, Let b €B be any
element lying over e, Clearly we may assume b generates B, Then
B « Z[t)/f for somc monic polynomial ;, hence by Nakayama B is
a quotient of A[t]/f with f monic representing T. But the decompo-
sition of B into a direct product correcponds to the factorization of
1 into relatively prime factors. GSince (i) holds, £ factors correspond-

ingly, so we are done.

(ii) =—=> (iii) : 1f B/A is given so0 as to test (4. 1), write
B C(K where C/A is finite. Applying (ii), C X B x D for some D,
Hence B is finite (and étale)., Since A/wm- A = B/Mm. B, B = A by

Nakayama,
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(iii) ==> (i): Suppose A satisfies (£.1). Write Z[|a|] —A

—>0 where |A| denotes the set of elements of A, and let ,ch[IAl]
be the inverse image of M-, Set A' =Z[|A|] , sothat A'—A
is surjective and local, Since A =¥ K, we get A — A, Now it is
clear that (i) is preserved in quotlents, 50 we arc reduced to showing
(i) for X' . Let £€A' [t] be given, monic, with £ =gh, (g, h) =1 in
T\'[t]. .. f is reprcsented in B'[t] for some B'/A', B! €L(A'), Applying
SGAI, Thcorem 7, 6, we may write. B! =~ C&‘, where C! =.A'[t]/q(t) .
Choose finitely many elements a,,***, a_ of JA| so that, if .

= (Z [al,. ce, a ])/2,,0 where ’(fO is the prime ideal induced by ’
the coefficients of q(t) are in Ay q(t) has the simple root a in AO
inducing Cg , and f(t) factors as mA'[t] . Jet By = (Ao[t]/q(t))ozo
( ¢f o induced by (t = 3)) . Then B, chA,. We may finally assume
also that f is represented in Bo[t], hence represented in Xo[t].
Since KO — A' we are reduced to proving (i) for K:) » where A is
noetherian and regular, Then XO is also noetherian by (4. 2) and
regular (since ?t has a regular completion). So we assume A given
satisfying (4.1), and A noctherian and regular, Let f be monic in A
Aft]. Ve may assume f irreducible and separable over the field K
of fractions of A, and we have to show A[t]/_f is a local ring, Let
L/K be a Galois.cxtcnsion in which f splits, and B thc normalization
of A in L, V/rite A[t]/f c B. It suffices to show B is local. Let AP
be a prime of B above Af s and let B0 be the decomposition ring of

with respect to the operation of G(L/K), A0 the maximal ideal of B



der ,}p Then B is atale /-~ with no residue field extension
9 = 3 =
(SGA V, Proposition 2, 2), Hence BO rfo = A, hence BO A, But

M
this means Ap is the only prime of B over Atf,

CCRCLLAAY (4. 4): (i) I 4 is a hensel ring and (¥ is an

ideal of A then A/O( is a hensel ring,
(ii) If A is a hensel ring and B/A is finite and local then

B is a hensel ring,

o~
(i) If A is any local ring then A is a henscl ring,

For (i);(ii); (iii) apply (i); (ii), (iii) respectively of (4, 3),

'[\J is the hcnselization of A,

Terminology (4. 5):

he map A —s A is uniw_versal with respect to maps into
bensel rings, As a functor of As A has very good properties, better
i fact than the completion, For instance, supposing A noetherian,
we have

o~
A  regular iff, A regular

—~

A reduced iff, A reduced
P

A normal iff A normal.

m‘le Proﬂerties. and otherss, 2T€ easily deduced from SGAI,
& »

“etion o
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THIZORM™M (4.6): Let A be a hensel ring. The category of
finite and finitely presented, ctale A-algcbras is cquivalent with

the category of finite separable A-alpebras. (A= A/4i» A),

2roof: The equivalence is of course givenby B > B
= B/m1» B, To' show that every separable Z-algebra Lis isomor_phie
to a suitable 1-3., we may assume L is a separable field exteasion, _
so L 7Y Z[t]/f- for some monic f . Letf € A[t] (monif:) rcpresent ?,
and set B = A[t]/f, so that; ~ L, Since (?) =1 in L, we have
(f') =1in B by Nakayama. Hence B/A is étale, finite, finitely

presented , as desired,

“Te have to show that the functor is bijective on Hom, iLet
B, C be given /A, 7/e may assume OSpec C connected, and it follows

from CGA 1, Corollary 5. 4 that Hom, (B, C) c Homg (B,C). Suppose

given a map B—s C and consider the graph B @ C— C. Since B,C
are separable over K, B ® C ~ C x L for sorixe L in such a way
that the graph is the projection'(Spec C connected by (4. 3) (ii)) .
dince B ® C is finite over A, it follows that B @ C =« C' X D for
some C'; % withT* 22 G, D & L. Combining the pArojecti.on with the
map C—> B @ C we get a map c—c' » and the induced map
C— T isan isomorphism, f."-!e have to show C.—:u C' is an
isomorphism, But c'is finite, finitely presented, and flat, hence
free. 5o a sct of elements of C' which is a basis mod Ast.of T as

an £ ~module is a basis for C' as an A-module, Thcrefore the images

in C' of a basis for C is a basis for C' s SO c ' .



Let G be a profinite group and denotc by Tq the topology
of finite continuous G-scts (cf. I1(0. 5) bis), Let X be a prescheme
and f: TG —>T, a morphism, Since the category of fI‘G ~shecaves
is equivaleni‘: with the c?,tegory of continuous G-modules, we may
identify £°7, T € A 5 » with a certain G-module, The underlying
group of this G=module is easily seen to be _l_i_.r-n__& F(f(a)) where G
runs over the category of quotients of G with rcéispect to open normal
subgroups., 3Since th? functor associating with a G=module its undecr-
lying group is exract, it is clear that the underlying group of the

module corresponding to %57 is

R Hm F(EG) = _lim I-Zq(Tx;f(E) i T) .

G G
So II(4,11) reads (where e € Cat Te is the set of one element)

HOCHSCHILD - SERRE SPECTRAL SETUENCE (4. 7):

Z2d = P <G, lim HYT,, , £C) F)> — (T tle)i F).
G

Here the G=cohomology is the Tate cohomology. For instance,
G mightbe 1.(x) » or a quotient by a closed normal subgroup of
w l.(X). In such cascs one can often apply Corollary 3. 9 to interpret

the limit. Thus if 2 is quasicompact and quasiseparated, X given
over a field k, and if X = =X @k.lz (k the scparable algebraic closure

of k), and w : Il =2 X is the map, one gets a spectral sequence



(4. 8) HP(GE/K), HYE, = *F) == H (X;T) .

Let again A be @ hensel ring and set k = A/ A, G = G(k/K).
Theorem (4. 6) and Galois theory yicld a morphism f: T, —> Ty

where I = Spec A and the topology in case (f).

HEOREM (4. 9): Let A be a hensel ring, X = Spec A,
k=A/MrA, TE€ 4, . Viththe abovc notation

HP(G(-I:/k);st) Hp(a., F) .

In particular, if k is separably algebraically closed, then
HP(X;F) =0 forall F€ 4y, p>0.

Proof: By (4, 7), we have to show

RU’F = tim EYT,, {(G;:7)=0, q>0.

Set X = Jim £(Q) . X 1is affine with ring 4 =lim A(G), A(G)the
affine ring oct; £(G). Each ring A(G) corresponds to a finitc Galois
e::_tension -l: ok (é) > k and hence is connected, therefore local by
(4. 3)(i1) and hensel by (4. 4)(ii). It is clear that therefore A is
local and hensel, with residue field k. Let E be the sheaf induced
= by F. By Corollaty(3 9, RUSF ~ Hq((_’ 3 g) Hence we are

reduced to the case k = k separably algebraically closed,



Let U/3 be etale, finitely presented, and suppose U covers
the closed point of 2 (so that U covers X). Let B be the local ring
of Uat a poirft above the closed point, Then by SGA I, Theorem 7. 6
and (4, 3)(ii) , B is étale, finite, and fin, pres.. Since k =K,
B 2 A by (4.6). Therefore X is initia! in the category of U € Cat Ty
which cover X, To show Hq(x, F.) = 0, consider the identity map
id: =3 X. Clearly RHd F =0, q> 0. Hence the stalk of
RY id, I’ is gero at every geometric point. Let P => X be a
geometric point of 3 above the closed point and apply II Corollary (4. 7)
and III Proposition (L. 9). Since X is inii':ial in the category of U
covering X, we find (qud* F)p ~ HYX,F), therefore HY(X,7) =0,
q>0,

LEMMA (4,10): Let X be a prescheme and € :P~>3Xa
geometric point, Let I be the category of pairs (U,f) ; U €Cat Ty s
g:P=—>U over € im the casec (1) topology. The subcategory I' of
I of pairs (U, ) with U affinc is initial in I, and Jim U
is the spectrum of a hensel ring with separably (U.9)er
algebraically closed residue field (the residue field is the separable

algebraic closure of I(x) if x €:I is the center of P),

Noutine .,

CCROLLARY (4.11); Yet w : Y —> X be a finite morphism .
Assume case (1). Then Rx «F =0 forall F & 'X/Y » >0 ,



“roof: e have to show the stalks are zero, Let

€ : P=>3 be a geometric point. By II(4, 7) and Proposition (L 9,

(::‘111,,,1«*)P ~  ¥m ni(ty , U X Y; F)

~ U. -JI £
’ ’ | §
o (Uur;)m. Hg(Ty, U x Y;F) where I, I
»

are as in (4,10), Since w 1is finite, it is affine, and therefore

U x Y is affine forall (U, §) €I' . Set Spec A = a_l_i'@ U ; Spec B =

=4_II}§'_@ U EX: Y. We have (Z:‘.?‘TI‘ *F)Pa’,Hq(Spec B, E) by Corollary(3. 9)

for suitable ¥, . B/A is finite, and 8o B is a direct product of hensel

rings by (4.10), (4. 3)(ii), (4. 4)(ii), and thc hcngel rings have separably
algebraically closcd residue ficlds, Sinc_e cohomology obviov:zsly

commut?s with direct sums of schemes, Hq(Spec B, .._t.-;) =0,q>0

by (4. 9), so we are done,

Section 5, Cochomological dimension. Let T be a topology,

and ¥ a presheaf of abelian groups on T, F is called a torsion

presheaf if and only if F(U) is a torsion group for all UE€Cat T,

PROPOSITION (5.1 Let £: T —>T be a morphism of
topologies and F a torsion shcaf on T, Suppose T is noetherian

(cf. 1, Section 5), Then RU°F is a torsion sheaf on T' for all qQq>0.
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Zroof: Clearly, an inductive limit of torsion groups is
a torsion group, Recalling (II Section 1) the construction of the
functor # , we are reduced to showing @97 is a torsion presheaf
where @9F is as in II Corollary (4, 7), i.e., we are reduced to
showing HYT, U ; F) is a torsion group forall ¢>0, UECat T,
VIrite

? = sup T
n€ LI

n

where F_ is the kernel of multiplicationby n in F (so that F Lo 18
the subsheaf of * of sections whose order divides n). By II (5. 4)
we are reduced to the case F = Fn » since T is noether%an. But
the multipl@cation F 25 F induces multiplication HYT, U; F)
L2 HYT, U; F), as.is scen by multiplying an injective resolution
of & by n, Gince for T = T:‘u the multiplication is the zero map,

it follows that H%(T, U; F) is annihilated by n,

CCIACLLIARY (5.2): Let w :3-—> Y be a morphism of
preschemes, { and Y quasi compact and quasiscparated, and let
T be a torsion sheaf on X. Then 29w ¥ is a torsion sheaf on Y,

all q>0,

This is trivial in case (f) because then Ty is noctherian,
For the other cases, one has to verify (notation of Section 1) that
a sheaf is torion if and only if o°F(resp. psF, resp. ¥°F)is

torsion, under the assumption (by (L. 1)) that these functors are
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.equivalences of categorics. The "only if" is obvious, To show
" if " we need, since X XSF ——=>7 (zesp. ...) to show that
if G is a torsion sheaf then o(sG is a torsion s!:eaf. But the
construction of & G (cf. II Scction 4,1 (2.1), II (L 1)) is by

means of inductive limits and so it is clear.

Let X be a prescheme, F a sheaf on X, and i:xz—>X
a point of XI, where x = Spec k(x) is given the structure of scheme,
F is said to be zcro at x iff, i*F is the zero sheaf. Cbviously,
if € :+ P—=> X is a geometric point centercd at x then the stall
(cf. (1. 7)) of ¥ at P is isomorphic to the stalk of i*F at "o,
One sees casily that T is zero at x iff, thec stalkof F at P is

zero for any geometric point € ¢ P=» I{ ccnteredat x

Suppose X defined over a field k., Tor a point x of X,
write dim x = tr, deg. kk(x) (so dim x is the reference to k). Ve

say a sheaf F on il is zero in dimension > r iff, < is zcro at

every point 2 of A with dimx> r,

DEFINITION (5, 3): X has cochomological dimension < d

(write ed X < q) iff, HA(:Z, F) = 0 “for all torsion sheaves = and

all q>d,

THECKEM(5,4): Let II/k be a noetherian integral
prescheme, k a separably algebraically closcd field. Assume the

field R{7) of rational functions of X has transcendence degree n over
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k . ¥ T is a torsion sheaf on X, zero in dimension > r, then

HY(Z ;) =0 for q> 2r. In particular, cd X < 2n,

Proof: We may assume case (f). The assertion is trivial
for r = =1 because a sheaf which is zero at all points is the zcro
sheaf (apply Proposition(l, 8)to all U € Cat Tx) . Moreover the
theorcra is constant for r > n, We usc induction on r, Assume_
the theorem truc for r =s - land let F be a torsion sheaf on X,
zero in dimcnsion > s, Let {iv 2z, —> X} be the sct of points of
X of dimension s, and let I,, = X,, be the closure of x,, with
its canonical reduced structure. }':v satisfics the conditions of the
theorem if s is substituted for n, and the induction assumption
implies that the thecorem is truc for Xv with r<s, Consider
the map F —=> i, , 1:, ¥, Since Il is noetherian and F is zero in
dimension > s it is casy to sce thata sccti‘on "§ € F(U) is mapped
to zero in iy, i, T for all but a finite number of V. Hence
one obtains a map 0 =3 K e ¥ > Gg iv*iﬂ; F wwdy C == 0
(where X and C are the kernel and cokernel respectively), All these
sheaves are torsion, and F, @ iv*i: F have the same stalks in
dimension > s = I, Thcrefore K and C are zero in dimension >s - L,
Applying the induction assumption and examining the rclations in the
cohomology, one reduces to the casc F = () iy *i::; F, hence by
II (5.5) to the case I = i, *it F . This sheaf is zero outside of X .,

Replacing X‘D by X and s by ‘n we are reduced to the casc F =i, Fo



where i:x-—->X is the general point of i and I is a torsion
sheaf on :z = Spec R(X) . Moreover we may assume the theorem

true for r<n,.
LEMIMA (5.5): qu* Fo is zero in dimension >n~-q.

Assume the lemma, and examine the spectral sequence
(cf T (2. 1) ERY = 5P RILF)==> H (x5 Fy). We
are interested in the terms Eg’o = Hp(}: s i, Fo? . Now cohomology
over a field is equivalent with Galois cohomology, so we can apply
the dimension theory for Galois cohomology to the ending HYx ; Fo)
of the spectral sequence, Since tr, deg. n(X) = n, it follows that
1Y, To) =0 for q>n (cf. Sem. Bourb, # 189, p. 12, Remarque),
Cn the other hand, we are assuming the theorem for r.< n, and so
it follows from the lemma and Sroposition S, 1-that E{ *d =0 for
p>2(n-~gq). The theorem can now be obtained by examination of

the spectral sequence,

2roof of(5.5) ¢ Let y €X be given, dimy= m >n~q and
let € : 2 —>X be a geometric point centcred at y, Ve have to
show the stalk (R%,F )y is zero, Let A be the hensel ring
obtained in Lemma {4 10)and let A,, *++, A be the affine rings of
the irreducible components of Spec A, The rings A.i are hensel
rings by (4, 4) (). Let Rj be the field of quotients of Aj (A is

reduced) . P‘j is immediately scen to be (scparably) algebraic over
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R(:Z), and, applying Corollary 3.9 (or well known facts about

Galois cohomology) one finds (qu* FO)P ~ @ H%Spec R, ; Fj )
where Fj is some (torsion) sheaf induced by Fo Since Rj is
algebraic over (), tr, deg, ,R.=n. Let K be the common

k)

residuc field of A, A, , so that X is the separable algebraic closure

J
of k(y). e have tr. deg.;, X = m . Now an equicharacteristic
hensel ring contains ficlds over which the residue ficld is purely
inseparable (this is casy to sce). Hence Rj contains a separably

algebraically closed ficld Kj with tr. deg., XK:= m. So

j
tr, deg, K Rj =n=- m . The lemma now follows from the dimension

theory for Galois cohomology.

CCRCLLARY(5.6): let X/k be a noctherian prescheme,

k a ficld, and let Xl 2 °°" z:r be the irreducible components of

£ with their reduced structure, Then
ed¥ < cdk + 2max { tr. deg.k R(Zj)} .

Applying dimension theory for Galois cohomology and
spectral sequence (4. 8) one reduces to the case k separably
algebraically closed. Then the corollary follows by induction from
(5. 4) and the map F — é F; where I; is the sheaf induced on

b 3

b ) (cf. also 3GA I, Theorem 8, 3 ).
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CHAPTER IV, Calculations for curves and surfaces

Section 1, We assume throughout this chapter that we are in
case (1) or case (f) and that X is quasi compact and quasi scparated in

case (f).

Let X ~—yZ be a morphism of preschemes, and A a .
group scheme over Z, Because of III (1, 4), the functor Homz( ’ A? .

Cat T,, —>(Ab) is a sheaf on X, e will denote s!xch a sheaf by Ay, or

X
merecly A if it will not cause confusion, Of course, Ay Homx( A % xX),
It follows immediately from Il (3, 7), if A is separated and finitely

presented over Z, that under the assumptions of III, Corollary (3. 9) the

sheaf Hom,( , A) commutes with the limit, i, e., that, denoting by F;
the sheaf induced by Ay on X, (Fi ~ Axi) we have E‘» ~ ZX_ (notation of

III Corollary (3.9)). This is also true in the case A is discrete (below).

Case A is discretes An abelian group A determines canonically

a group scheme over spec Z, namely—u- spec Z with the obvious
group law, Ve denote this scheme also ::y A, and hence have defined
Ay. This sheaf can also be obtained in other ways. In fact, Ay is
isomorphic to the associated sheaf of the constant presheaf whose group
of sections' on each U E Cat Ty is A, Therefore we call A, a constant

sheaf, .Or, denoting by i: {X} ——>Cat Ty the inclusion of the discrete

X
X
topology {X} (c£H (2.4)), Ay X 1A= (ipA)#. In particular, the notation

Z,, does not conflict with II (L 7) (however Z F spec Z). Finally,



~102~

suppose U € Cat Ty, consists of finitcly many (say r) connected compo-

nents, Then A, (U) X AT,

If X is noetherian, integral, and normal, and if i : x =X is
the general point, then izA, R Ay. This follows easily from SGAI,
Prop, 10,1, But, it is false in general, For instance, for a nodal

rational curve X, one gets 0 ~—pA,—> i A —>A~— 0 where An

is the constant sheaf at the node O (extended by zero),

Among nondiscrete group schemes, we will be particularly
interested in the sheaf (G, ¢C of units of ['(U, U) (U €Cat Ty).
lere G, = spec Z[t, 1/t]), and the sheaf of nth roots of unity e
Suppose n is prime to char k(x) for all points x € X, Then the nth

n
power map G o G  yields

(L1) 0 > - '—>G? 30 (n prime to the
4 "‘x my mx residue char,)

In fact, this sequence is always left exact, and under the assumptions,
extraction of an nth root of a unit gives an ctale covering, Hence the

cokernel is zero, as a sheaf,

PROPOSITION (L. 2): H'(X, G_)~Pic X,

Proof ¢ Assume first X affine, Then we may assume we are in
case (f)., By II (3. 6), ! may be computed as Czech cohomology.
Since for a covering {U, —X} in case (f) || U, —>X is faithfully
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flat and quasi compact, the result follows from descent theory (cf, Sem,
Bourb, No, 190, 4. e) and the fact that the topology c_ontains sufficiently
fine Zariski open cove.rings. For the general case, let TZ be _the
Zariski topology on I, TC the Grothendieck topology (case (1)), and

£1 T% —5 T the inclusion, Knowing the result for affines, one finds

lesd}m = 0, and so we are done by the Leray spectral sequence II (4,11),

Suppose now X is integral, and leti : x 35X pe the general
point (x = spec R(X), R(X) the field of rational function of XX), We have

Hl(xs G ) =0 by (L. 2) (this is "Hilbert theorem 90"). More generally,
- 1 .2, _

H (u, G ) 0 for all u € Cat T Hence Ri, (l':m,x— R, (Gm)x = 0,

By II (4. 11) we find

(L 3) 2y (%, i, Gm) =0 (i : x =—>I the gen, pt., Xintegral),

There is a natural inclusion (G )y “>iy (T, ),. We write

(L 4) 0-—->(l';m._'_,i*(l':m *,Dx >0 (v n),

Here Dy, is the sheaf of ""Cartier divisors" on i, Combining (1. 3),
(1. 4) one gets

(L 5) R(X) —>H(X, D) —»Pic X —0 (X integral),

It is clear from the "five lemma' that "o(z., Dv) is the same as it
would be if D,, were defined by (L 4) in the Zariski topology (because

#(x, 1, @_) = 0 also in the Zariski topology).
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I X is moreover noctherian and regular, D, is casily identified

as

(L 6) D}: X Ggiw Zx 8 (X noeth, , reg.)

where {i\) tx, --9}{} are the general points of the irreducible closed
subsets of codim 1, 3ince in the Tate cohomology HI(G, Z ) = 0 for any

G one finds Hl(x.m Z) = Rli Z, =0, Therefore by the Leray spectral

V¥
sequence and II (5. 5) (Ty is noetherian)

1 .
(L 7) H(X, Dy) =0 (X noeth, , reg,)
We get from (L 4) end the fact that i, (G_) =0,
b4
2.,

(L 8) Ho(, mm)c...,x-x"(x; @) (" ")

Presumably, if X is affine, HZ(X, G}m) is closely related to the Brauer
group of its ring (cf, Auslander ¥Goldman (AG)).

Section 2, Case of an algebraic curve,

Let X be a noetherian integral scheme over a separably
algebraically closed field k; and suppose the field R(X) of rational
functions of X has transcendence degree 1 over k,. In particular, X
could be an algebraic curve, leti :x = X be the general point. Ve
have E9(x, G_) =0 for q =2 by dimension theory for Galois cohomology,
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for q = 1 by. (L 2) and for q = 2by Tsen's theorem (cf. (L)) if k is
algebraically closed, In general, Hz(x. G ) is anyhow a p-group
(p = char k) as is seen from (L. 1). This being true for any algebraic

extension of R(X), one finds Ri, G _ are p-groups for q > 0, and hence
(2.1) HYx, iy Gm) =0 (ignoring p-torsion)

. . .
If X is a complete algebraic curve, so that HO(X, G-m) 0 k, (which
is divisible by n if (n, p) = 1), one finds from (L. 1)

r; n q=0
(2. 2) Hq(},’;. £ ) = < (Pic x)n qQq=1 (X.complete,
0 q>2
-

where (2ic X)n is the group of points of order u on the Jacobian of X,
These are the expected values (However, one cannot hope for ''good"
values of HY(X, Z ) since for instance (X, Z) =0 if X is regular. ).
Note that in (2, 2) the removal of a point of X has the effect of killing

the I-IZ.

If X is regular, so Dy, torsion free, one deduces from (L 1) and (L 4)

(2.3) 0D —mply @ iy G ——%Dx/npx—-zo . (n,p)=1)

which is an acyclic resolution of /}”“n (possible p~torsion does not matter),
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GO one may write

@4 2 p) Her@® @ ol /{te RE@TT  ((ap)=y

wheve (f) denotes the division of f,

Let again i : x —=>X be the general point of X, and F any
sheaf on %, Clearly R 1*.: is zero at x(q > 0), hence is cochomology
vanishes in dimension > 0 by III (5. 4). Therefore the Leray spectral

sequence H?(7, qu* ) =$I-I* (x, &) reduces to an exact sequence
(2.5) **° 2R, 1*5')....91-;‘1(;:, F) —>H( qu*;: -,

In fact, by the dimension theory for Galois cohomology, HP(x, F)and
RN, T are zero for q > Z ¥ 7 is torsion or corresponds to a
divisible G(R{X) / (X)) ~ module, they are zero for q > 1. The
relevant part of (2, 5) is then

1

(2.6) 0 —X (4., i, T) =3 H (.: I‘)--)H R H (n., igT) >0,

Suppose X is regular. Then HOR! & @ Hl(xp, Fp) where p runs over
’ P

closed points of X, xp is the general point of the henselization of

O, ,8nd F_ is the induced sheaf of x . This is essentially the

i |
situation studied by Cgg (O) in the case F = A, is points with values

in an abelian variety A/x. I-;l 2y i*A ) is then the group of "locally
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trivial principal homogeneous spaces' of A, Ogg derives a kind of
: Opy ¢ 2 20 A .
duality between H (X, i A) and H™(X, i, A) (A the dual abelian variety),
By similar methods one may obtain a perfect duality between
#Y(Z, §,F)and EZ"YX, i,T) when F is points with values in a finite
group scheme over x of dimension (as R(X)-module) prime to p and
F is its Cartier dual., The duality is given by a cup product into
H%(X, ) ¥ 1/Z (prime to p), pthe sheaf of roots of unity.

Section 3. Local calculations in dimension 2,

. ':Let ko be a separably algebraically closed field.' We -denote
by k,{=, Vo ers z} the henselization of the local ring at (0, ..., 0) of
spec ko[x, Vs vee, 2} Itis known that ko{x, Ys ovey Z} consists of
those power series o CkO[[::, Vs «ees z]] which are algebraic over

k[x, y) ...,2). e will generally denote the closed point of spec ko{x,y...., z}
by Q.

In thie case of one variable ky{t}, set k = kj({t}) = field of fractions
c_:f ko{t}. ' The gnly algebraic extension of k of degree prime to p=char ko
is kft i ny i.e., ifG = G(i/k) is the Galois group of the separable
algebraic glosure » and if G is the Galois group of the maximal ex'ten_aion _

prime to p, one has G inverse limit of Z/n , (n,p) =1,

(Z)(prime top) -
and the kernel of the map G —>G is a2 p~group, (This isomorphism is not
canonical,) One finds

. . fo =0 .
(3- 1) Hq(spec k, /‘n) = Hq(G'/"n) A ~Z/n q=1 ((n' P) = 1)-

LO q>1
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tlere spec k = (spec koit}) -0,

Consider the case of two variables ko{t, x}, and let

R = kit o), = kylt, x}0A)

We wish to calculate the cochomology of spec R = spec kq{t, x} = locus

oft =0, Now Rk =ky{{th). Gset

R ROk = imR Ok
k "'1‘:.'" k

3

when k is the separable algebraic closure of k, and k' runs over finite
subextensions of k, Choose such a kf and let t. be a local parameter

of the normalization © of ky{t} ink , so that O’ ky{t}. Thenit s
easily seen that R'=Re k' ~ (ko{t', x})t, which is a ring similar to R,
Now R (hence R') is intfgrally closed. Moreover every prime of R is
maximal, Finally, R is noetherian and Pic R =0, Hence R is a 2ID,

Since R is a limit of such rings, Pic R = 0 and R is integrally closed.

Since R has transc, deg. 1 over l:, every prime of R is maximal,

Lctually, ]::. is also noetherian, hence a PID. To show this one has to
show every prime ideal finitely generated. This is equivalent to showing
every prime is induced from some R',. i, e. , to showing the primes of

R' split into finitely many primes in ;?., which amounts to showing R/,-tf
finite over k for all primes ’f°£ R. Nowgpis induced by some prime
element f € ky{t, x}, t not dividing £. rite kjit, x} as a limit of
rings §tale, localized from an algebra of finite type over ky{t}[x]). We
can find f in some such ring, say 4. Then A/(f) is of finite type over
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koiths Applylag ZMT, A/(f) is localized from a finite k{t} = algebra.
Hence A/(f) is finite over ko{t} and hensel by III (4. 3)(ii) and (4, 4)(ii).
Therefore A/(f);gko{t, x}/(f) and we are done,

By (L 2) and (2. 1)

(3. 2) H%(spec L:t, Gim) =0,q>0 (ignore p),

Now in a hensel rinp over a separably algel?rai.ca.lly closed field, the
group of units is obviously divis%ble byn , (n, p) =1, Hence for an
R! as above, R'* /'(R"%‘)n 2 Z/n, the generator being the residue of t'.
Since i:,'/n is in R ’ l-i* is divisible by n, Therefore (L 1) and (3. 2)

yield

(3.3)  Espec R, p)=0 q>0 ((m, p) =1).

Applying the Hochschild=Serre spectral sequence III (4. 8)%

(3.4) H%(spec R, Gm) =0,q>0 (ignore p)
/ P 1 =0 .

{ /;\) H%Y(spec R'/}d‘n) = {Z/n,q=1 ((n, p) =1).
kﬁ/,/‘ 0,q>1

(The object on the left is a picture of spec 1),

Set Y = spec ky{t, x} = (I the closed point) and j:spec R—=>Y

the map. We have spec R =Y = X where X = spec ko({t}) is the locus t=0.
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Cne sees easily that qu* (];m =0, q > 0 (ignore p). There is an exact
'seque'nce 0 -—;a;;n“ — (I}m — Zx - (0, and hence '
Hi(y, @ )"’JHq-l(X, Z) by (3. "-), for q > 1. Clearly I—Il(Y @ ) =0,
“’e have HY™ (4-, Z) A Hq' (%, af ._,) because of the sequence
»®@/Z , and so H (}’, Z) N m/z: (prime to p).

0 37, e I
Therefore
(3. 5) . Mo 2=0
o /’\ I'Iq(Y, /,’“n) - 0 q= 1 ((n. p) = ]_).

i g

(-
N

This is the expected result if one thinks of Y as a 4 ball minus point.

Zfn q=3

17e will also need to know the cohomology of spec S where

5 = (kgi%s v} )xy = ky{x, y}li/xy]. This could be obtained from (3. 4)
but for our purposes the following method is better. Sett = xy, so
thatS:)k=ko({t}),andset§= S@k = lm 58 k' (k/kf ite
ooty
k kl k
Jere 5 i(z) k' is not localized from a regular ring, but one

separable),
5 is seen to

can show anyhow that Pic S i? k' is zero (cf. Note (4. 8)).'
be a PID b‘y a simila'r a.rgqment to that used for R above, and therefo're
H%(spec 5, @ )= 0, q> 0‘ (igno?:e p)s '-Iowever, HYspec 5‘, (I:—m) =0, q>0
is not divisible. In fact, .
(Z/mo0Z/n)/ 2 (A

iz ~3(1, 0) and

(ignore p). However, Ho(5pec 5, @ ) =
computing a httle, one finds 5 /(S )n
"diaGOn?-l", (n, p) =1) with c.anomcal generators
y ~m> (0, 1), Hence Hl(spec 5, /“‘n) =(Z/m OZ/n) / A, x and y could

also be viewed as generators of this group when written in the form (2.4).
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Applying III (4. 8),

N EMspec S,/p) = (Z/mOZ/m q=1 ((n, p) =1).
Hom(G, (Z/n 8Z/n) /A)q=2

Section 4. Digression on the Picard group of a curve over ko{t}.

Write O'= ko{t} (<, algebraically closed), In this section,
V denotes a scheme proper over spec ¢, which is irreducible and non-
singular, of dimension 2, “7e denote by U the general fibre of V, and
we assume U is geomdricpll;r simple over k = ko({t}) (uis an
algebraic curye). Finally, we assume V/ spec ™ has a section, In
this situation, if iI denot.es the closed fibre, then U is the open subscheme
V: X of V. Let }f.i(i =1, ..y M) be the irreducible reduced components

of XX, and say X =37 r X, (cf. (4.1)(e)).

The scheme V/spec 6/, being of finite type, can be obtained by
a base extension from some VO/ spec 04, where 06 is a geometric
discrete valuation ring over kg and o7 oy 18 étale, and V, may be
obtained by localization from an algebraic surface defined over k.
The following properties, listed for the convenience of the reader, may
be obtained Wiﬂ"l no difficulty from classical surface theory by applying

such a descent, if they are not obvious anyhow,

(«.1) (a) Resolution of singularities if the assumption that V is

nonsingular is dropped.



(b)
(c)

(d)

(e)

(£)

(e)
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V is projective over spec =,

Intersection theory for (Cartier) divisions on V, of the form
(D¢ Y) (an integer) where L is any division and Y is a division
with sunport on the closed fibre I, With this restriction,

(D - Y) depends only on the division class of D. Hence the

symbol may also be used if D denotes a division class.

There exists a division class K, called canonical, appearing

in the genus formula (e).

letY = :sixi be a division with support on I, and assume
Y>0. O'ne associates in the obvious way a closed subscheme
of V to Y, which we denote by the same letter., The following
formula holds:

1 —-X(Y) =-12((Yz) +(X- Y)) + ld:fnp(Y) ( X the Zuler Char,)

The definition of p(Y) is extended formally to nonpositive Y.

Castelnuovo's criterion for exceptional curves (of the first
Kind)s p(E) =0, (£%) = =1 (T reduced, irreducible, with
support on :I), and the factorization of regular birational maps

into locally quadratic transformations,

If Y has support on X and (Yz) =0 then Y = g for some
integer s (This follows from Zodge's theorem on a surface,

and the fact that V has a section).
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PRCPTIITION (4, 2): Consider the canonical map Pic V — Pic X,
(i) This map is surjcctive.
(ii) ker (Pic V—»Pic i7) = % is uniquely divisible by n

prime to char ko = Po
“Te omit the proof.

Denote by Pic:” the subgroup of Pic X consisting of divisor

classes whose degrce on each reduced, irrecducible component i, of X

OV the inverse image of Picox under the map

0

is zero, and by Pic
Ric V—~pPic X, Pic V is the group of divisor classes D on V such
that (D ° :Si) = 0 for all components X, of . Now Pic'% is cagily seen
to be divisible byn prime to p. Since obviously % =ker(Ric’V—s Dic?x)

one finds by (4. 2).

CCROLLARY (4 3): (i) Pic’V is divisible by n
se . ] O ] r hid
@) (e V), = (Pic®V)_ 7 (P1c%2) = (Plc X) ((m, p) =1),

where ( ) denotes the subgroup of clements of order n.

_ Let 4 be the group of divisors (of the form Z 8,X, with support
on %, and A its image in Pic V. By (4. 1)(z), B = 4/ (2) where () is
the subgroup gencrated by I, Clearly, U is the kerncl of the map
Pic Vs Pic U, This map is sur,_iective because V is nonsinpular,

Zet A/spec k be the Jacobian of U, and for a field k./k denote by A, !
the points of A with values in k'. A"k c Pic _is the subgroup of divisor

classes of U of degree zero. Now by (4. I)(g), En P1cv = 0. Hence
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the map Pic V —3 Pic U induces an injiction Pic® V &—s>-Pic U,

Clearly its image is in A,, and we denote this image by Aﬁ .

LEMMA (4. 4} A} depends only on U/k,

Proof;’ Given a curve geometrically simple, proper over k, one
can imbed U as an open subscheme c_:f some V/spec O~ as above, using
(4.1) (). Applying (4.1) (2) and (f), one reduces to showing
Pic® v =L 21 v' when £ : V' —V is obtained by blowing up a point
P of V. We have to show that if D' is a divisor on V' with (D' x; }=0
for all components X; of X', then D' is linearly equivalent to ¢t (D) for
some D with (D - }{i) =0all § ., This is easy.

PROPCSITION(@, 5): Ay /A is a finite group.

2roofs. Consider the diagram

B — 7™ e
A T

L) ey Pic Vs Pic U
A T N
0 —-—-b-'PicOV—-a;Ag

where ¢ is the cokernel of Al(: ~—3Pic U. We claim the rows and columns
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are exact if zeros are added on the periphery, Here m is the number
of irreducible c_omponents of X, and Pic V ——7%"‘ is the map

D> ((D - Xl), cee (D Xm)). This map may be factored as

Ple V—3Pic X —Z™ where the second arrow is the "degree",
and is surjective., Clearly therefore the middle column is 'exact.

The only remaining one which is not obvious is the top row, but

b —=>Z™ is injective because of (4, 1) (g).

From the top row, since L has rank (m = 1) over Z, € is a
group of finite type and of rank 1, But Pic U/Ak A Zis also of rank 1,
Since we have 0 —--)A.k/Aa —r € —3-Plic U/Ak -3 0, the proposition

follows,

Note that since A;): is divisible If char ko = 0, one can characterize

Af: as the maximal divisible subgroup of A, in that case,

Let k'/k be a fin_ite separable extension, and let @: be the
normalization of G’in‘k', v =u Ek‘. Constructing a sultable V'/spec O
with general fibre U', one defines Aﬁn CAgr. By (4.1) (a._), v' may be
found with 2 map onto V (over 05/ O). Therefore the map A, C—>A. s

carries Aﬁ into A‘l(:' . Set

o - [} .
= A k . alg. clos. of k /k finite
) lil_kl (k the sep. alg. clos. of k, k / )
kok Dk

o

so that Algc CAg . Denote by (Z)¢ the subgroup of an abelian group Z of

elements of finite order prime to p = char ko.
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THEOREM(4, 5 ). Suppose X reduced and with only ordinary

nodes as singularities, Then
() (Al%)f =(Al(z)£ (in other words, G(k/k) operates trivially on (Ag)f,)

(b) I a € (Ap) and G'-GG(T:/R) then Ga - a € A?: .

Prooft Leta € (Ag)f, and let k'/k be a finite separable extension
of k in which a becomes rational, Let o be the normalization of ¢ in K
andt a local parameter of O". Then c;’ = G'[t']. Set V' = v %,0". V' 1s
easily seen to be nonsingular except above the nodes of X, Above the
nodes, V| is anyhow complete intersection, hence Cohen~ Macauley, and
therefore normal by Serre's criterion sin?e there are no singular curves
on V'. Again since V' is Cohen=-Macauley, one sees immediately that
the closed fibre X of V is reduced. The map X —3X is 11, hence

an isomorphism (because nodes are "minimal singularities").

Let V' —3V' be obtained by resolving the singularity of V',
and choose V' minimal with this property. Let X' be the closed fibre
of V" and 91, t22y8, the com:xected components of the exceptional
locus for the map V " -—9V', say ei = 9} Ueeeo U ei‘i where the 6:
are the irreducible components, .D.enoting by Xo the proper transform

on V" of the closed fibre X' of V', we have
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v . R .
some a, >0, Ve claim a‘i) =1, all i, ¥, and that the curves Gi consist

of a configuration as depicted below (with suitable ordering of G;))

/ Ny
N\
>\ i \
i N
../ \\XO
\
\.

Vv
all intersections being transversal and Gi nonsingular and rational with
v
(ei z) = -z.

Note (4, 8): This is of course purely a local statement, although the
proof below utilizes the whole scheme V". The configuration may be

used to prove Pic 5 = 0 where 5 is the ring used for (3. 6).

: These assertions may be verified by routine calculation:®

. .
Note first that if X = 2> 0 (Z > 0) and if Z contains no exceptional

(1] (4]
curve then p(X =~ Z)<p(X ). For,

p(X - Z)

IE"D+2H - 2" 2) - ke x") - (k0 z)) 41

p(x') + !?:((zz) -(x- z).

' " ’
By (4.1) (g) and the fact that X has components with multiplicity 1,

(Zz) <0, and (K* Z) > 0 because Z contains no exceptional curve,
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. K
Therefore, since V" was chosen to be minimal over V,

p(x")> péo DEE 9‘1’)

with equality iff. all s} are equall, Calculating with (4.1) (e),

(4.9) p<xo+§9;}>=p(" Zr-‘ (9"’)+2{-__‘(x
; Z -9;‘9-;::1'1.

Y <u

. - "
Here p(Q;’)}_ 0, ; (Xo . G\i’)g 2s since 6, lies above a node of X, and
sV

‘g((e‘i'- of) > r;-1

since 8, is connected. Moreover, p(Xo) 2 p(X')-- s since separation
of a node reduces pby 1l (s is at most equal to the number of nodes).

So combining,

S
i i L_rd '
p(}.)ap(Is)*s+Zs+Z ri-l-l__‘ri-‘-p(}{).
i=1 i=l

But by the invariance: of FEuler characteristic under specialization,
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P X') = p(U'-) if U is the general fibre of V'. Since U is also the general
fibre of V", we have p(}:l) = p(}:"). Therefore all the above inequalities
are equalities, Since p(e‘;) =0, (9: Z) must be less than -1 by (4.1) (£).
We have (X » 6)) = 0 (since X' is principel), hence (X -6} 6}) > 2.
But by the intersectior'x numbers appearing in (4. 9), the average value

of (X' - 6). 6}) for i,V varying is 2. Hence (x''- o). 6y =2 forall
i,V and so (9;)2) = =2, It is now easily checked that (4. 7) is the only

configuration possible,

Returning to the proof of (4.6) (s), we had a € (AD), rational
over k'. This a corresponds to a unique division class D' & (Pic0 V")f,
so (D' - ;:;.') = 0 for all components xj" of X'. In particular '
(D" . e‘i') =0 foralli,V. Because the G:are rational curves with
('G;)z) = =2, it is known that this implies the transform D' tD onV
is locally principal (cf. (C)). D' of course has finite order. Hence
D' induces an element d € (Pic X )¢ % (Pic X) . By (4.3), there exists
abDe (Pico 'V)f inducing 4, Cne finds the transform of D on v'is D",

so (a) is proved.

’ |
To prove (b), let a € (Ag)e and choose k /k as above, but a
Galois extension, so that a is rational over k'. Retain the above
notations. ‘e may find a divisor D' onV" inducing the class a in

1" .
Plc U = Say a is of order n, Then there is a rational function

gt .
f on V" such that

nD" = @)+ 5%, »
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some g, (X'; the components of X"). Now G = G{k/k) operates on
V./V by automorphisms, and since V' was chosen minimal over v ’
G also operates on v /V by automorphisms (such a minimal model

is unique)., The components of X'" lifting from components of X are
certainly left fixed by G, But, examining figure (4. 7), it is also

clear that the Qi‘,s must be left fixed. Hence X is left componentwise
fized, Obviously Ga (G~ € G) is induced by the transformed divisor

: .
D o » and we have

@0 = n" =)+ Joxy T =)+ 23 5%y
Hence

a@"® -0") = ) - @) = 70

ngG 1]
so D —D € (Pico V")n, and G'a - a2 is therefore in A’l(: by part (a).

Section 5. Cohomology of a curve over ko{t}.

Let V/spec ¢, U, X be as in the previous section. We
assume further that X is reduced, and has only nodes as singularities,
and that U has positive genus (the case that U has genus zero is

easfer). Ve want to prove

@  HUV, p) —HUK, p), el g (s p) = 1)

5.1 :
&0 (i) - HY(v, &) =0 q>2 (ignoring p~torsion).



=121~

The map for (i) is canonical, and is induced by the map ye ny — i, (/7§1 x),

where i ¢ X —>V,

Now Hz(x, /Ln) 2~ Pic X/n x (Z/n)™ (m = no. of comp, of X?,
and HI(Z, M) =0 for a>2, By (4.2), Pic X/n % Pic V/n. Therefore,
assuming (5. 1) (i), the exact sequence (1. 1) shows HY(V, Gm’. is
torsion free, q > 2, prime to p. Hence (5,1) (_ii) follows from (5.1) (i)
once one knows HY(V, G m) is torsion for q > 2, and that fact can be

checked easily from the exact sequence

0 > — g, & - D(X) =20
my ® Tmy

( : U—=—>V the injection and D(:X) the sheaf of divisors on V with

support on X), So we concentrate on (5.1) (i),

The isomorphism is obvious for q =0, For q =1, we have

from (1,1)

0 —> 0’5/( O?)n ---»,d‘(v. /an) -3 (Pic 'V)n — 0,

Since @’ is a Hensel ring, 03'= is divisible by n. Hence
H'(V, gt ) % (Pic V), Similarly, H(x, J) 2 (PleX) . Soby
(4. 3) (ii) (and trivial functorality) the assertion is true for q = L,
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The case q =2 is harder. 7’e use the relative cohomology sequence
III (2, 11) for the map i : ¥ —>V, and (L 1), to obtain an exact

commutative diagram

Hy (G,)/n—> HE ()

l |

(5. 2) 0 —>Pic V/n —sH(V, Jod —> €—50

Lo

0 —>Pic U/n -—-)Hz(U. /}un) —— § >0

where €, § are the cokernels, The top terms are easily calculated
by using III (2, 8) and the spectral sequence HY(X, qu!F) 21—!; (7).
L] - z
One finds H., (G}m) ~ Z™ and H,, ‘lj‘n ) o2 (Z/n)™ (m=no, of comp. of X),
Hence the top arrow of (5. 2) is an isomorphism, Therefore € 3 §

is an injection,

Now if V' is an &tale covering of V, and U', X' are the fibres
L
of V , it is clear that the diagram (5. 2) is mapped commutatively
into the similar one for V., U, X .

LEMMAC(5, 3 ): The image of H3(V, x_) in H¥(U, #_) is
. HAY, gy P
annihilated in some &tale covering V of V,

Assume the lemma and consider the Hochschild-Serre spectral
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sequence III (4, 7) with G = v ,(V)., From thc ma —y {

q (4. 7) (V) P fay *(/%,x)
one gets a morphism of spectral sequences with ending
q£(v, /%n)-—ﬂ-l* (V, g p0) H' (%, p_). Ve have, in the notation

- L] 1
of 111 (4. 7), Hq(Tx, £(G) s F) =~ HYV , F ) by II (4,13), setting
- L]

vV = f(G) and I the induced sheaf, Applying (5. 3) to the diagram

(5. 2), one sees

R T .
h:nH(V,’Ln),u h:ancV/n.
G

But by Proposition (4, 2),

lim Pic V' /n %> lim 2ic X' /n.
—_— —

Taking into account the isomorphisms in dimension 0, 1 one finds
1 ) ] .
Lim HY(V ,/}a.n)—>lim Hi(x '/"n) forq=0,1, 2

(In fact, one gets 0 forq = 1, and 0 for q = 2 if e contains no rational

curves,) Therefore it follows from the spectral sequence that
o .
Hi(v, /(n) —HI(X, ya forq =0, 1, 2.

It remains to show I-Iq(V,/ln) =0 for q > 2. (By LI (5. 5) this

is anyhow true if gq > 4,) For this purpose, examine
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the Leray spectiral sequence
(5. 4) HP(V, RYyp ) =DH (U, g ) (G : U—sV).

One finds,using (L 1),Rg, o & D(X)/n . (D(X) the divisors with
supporton X), H w : X =X is the normali.zation of X, it is easily
seen that D(X)/n &) 7 ,(Z/n)g. Hence HP(v, le%) A~ HP(X, Z/n)
by III (4, 11)., This is computable by Section 2 since Z/n is isomorphic
(not canonically) to i, By I (5. 5), sz* A4, 1s concentrated at the
closed points of I, and qu* I(n is concentrated at the nodes of X, and

is computable there,

To calculate the encing u (U, /‘n’ of (5. 4), use the spectral

sequence III (4, 8), The nonzero terms of Eg'q are (cf. 2, 3))

| .
z/n  H(G, Z(n) _
(.5) BP9 =ERY = ) H@G (A),) (G =GE/K).

/Jn H (C'a M)

Because of the special nature of G (cf. Section 3) one has a duality
for the G-cohomology, due to Cgg ( ) from which, together with the
autoduality of the Jacobian A, one finds the Euler characteristic

X0, o) = TTEOT 7 (550, p)) = 0

(# (Z) =no. of elts. of Z).
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xA(u, /y(n) can also be calculated from the Eg'q terms of (5. 4),
and the calculation shows that the unknown terms 4 (H3(V, /(n” and
# (H4(V, //”‘n» are equal. So we are reduced to showing H4(V, /ycn) =0,

Since H4(U'ﬂ"n = 0, one sees from (5, 4) that the map

Hle --—)HQR4 = H4(V, /ycn) is surjective, so it would be convenient

it H23! were zero, To achieve this, let V_ be obtained from V/o’ by
removing a section s § passing throug}'x each component X, of X, Itis
easy to see that Hq(V,/Ln) —I-\-J-qu(V-,//un) for q > 3 (apply 3. 4) and

I (4. 9) to the injection V™ —~—V). But in the Leray spectral sequence

similar to (5.4) for V_, the term Hle is zero, so we are done,

Proof of Lemma (5. 3 }): To begin with note that the assumption

that X be reduced with only nodes is preserved in an étale covering
V'/v. Set

z = tm(H%(v, 2 ~>H2(U, Hn)
Erom (5.5) we have a sequence
0 -——-)vH"l(G, (Al-:)n) --—}HZ(U; A‘(n) ~—>Z/n —>0
where the Z/n is canonically isomorphic to Pic U/n, This Plc U/n

will be annihilated in a connected étale covering of degree n, hence

in some V'/ V if we know Pic V contains elements D of order n (as
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usual by adjoining fvn for an f with (f) = nD). S5Such D are easily seen
to exist by (4. 3) (ii) since X is reduced with only nodes and P(X)> 0.
So for some V'/V the image of Z will be in the image of oy (G, (A)n),
which is contained in HI(G, (A'.)n) (A' = Jacobian of U and we are
dropping the subscripts K on A, A').

Now since (Ac’)n ~ (A:Z)n 25 (Pic V), by (4.6) (a)  the
elements on—Lo)n can be annihilated in some V'/V. Choose such a
v' and let QC (A')n be the image of (A)n' Y¥/e may assume
on (A'o)n = 0. Nowis a G—-submodule of (A')n. Therefore, by
(4. 6) (b) applied to (A') » G has trivial action on &, and
#(G, 2) & Eom (G, CL) (not canon. ). Applying (4. 6) (b) apain,
III(G, )c::! (G, (A ) ), hence the image of H (G (A) ) is exactly
Hom(G,a,). “Je are going to show that the image of Z in H (G, &) is

zero at this stage,

Let ky{x, y} be the henselization of &Y, . at some closed
~ v. Q .
point Q of V (say  is a node of X) and let 5 be the ring (ko{x, y})t
(t = =y if x and y are chosen suitably). i7e have a diagram

U & spec 5 HZ(U; /"n) —-}Hz(spec S, h)
l L ’ and hencc I ) ]
V<— spec k_{x, y} z2(v, M —H(spec k_{x, v}, o)

]

0
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Therefore = is mapped to zero in Hz(spec S’#n) for each node Qof X.
Zquivalently, the image of = in I—IZ(S, /Ln) must be zero for C any node

'
of I (the closed fibre of V').

The reader will verify that there is 2 morphism of spectral

sequences

uP(G, HY(T', S =2 H (U'-/m’

b

HP(G, EYspec 5, //l.n)) = u (spec S,/A«n)

(O =USEK, § =58k,
K k

Applying (3. 6) and the above discussion, one sees that in
order to show the image of Z in HI(G, (A.)n) is zero, it suffices to
show that if a € R c H (ﬁ',/%) and & # 0 then the image of a in

- '
H"‘(S,/An) is not zero for some node QQ of X .

Let D be a divisor on V' representing a in (Pic U)n and say
D is chosen so as to avoid the nodes of ¥. Then there is a rational
function f on V' so that (f) = nD + Z‘eiX'i for some s; € Z, X; the
components of X'. - Here Z,‘si}{; is deter-mined mod X' and mod n,
but since a ¢ (A°2n, 'Isix'i # 0 (mod X', n). Hence for some pair of
indices, say for 1, 2, s; #5, (mod n) and we may assume X; nx'z PR
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L} L}
Let O be a point of intersection of I, , Xz. f represents a unit in

1
the ring S obtained frorn 7, and in the notation of Section 3 (cf. (3. 6))
this unit is not zero in (Z/n @ Z/n)/Asince sl-#‘ s, (mod n), Obviously
this implies that a does not have zero image in Hl(g, /'Ln) (cf. (2.5) if

necessary), and we are done,

Section 6, Case of an algebraic surface, Let w @ V o> C

be 2a map of a complete nonsingular algebraic surface V onto a
nonsingular curve C, everything defined over an algebraically closed
field ko, /e assume that V/C has a section, that the general fibre
of 7 is geometrically irreducible and simple, and that all fibres are
reduced, with at most nodes as singularities., ~7e want to get

information about the cohomology of V in terms of w,

Given an algebraic surface V/ko, it will in general be necessary
to blow up a few points of V in order that such a map exist, so one
should first examine the effect of a locally quadratic transformation
f: v --Q'V at a closed point C of V on the cohomology. This is

easily done, and one finds

m a= 0
qu*(l‘rm = Z, q= ' (ignore p)
0 >1
(5.1) — ?
R f*/“n = < (Z’./n)Q =2 ((m, p) =1)
o - q#0, 2
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where Z.Q denotes the extension by zero of the she?f Z on Q, and
(:“../n)g is similar, Hence the only change in 7, Gm) is in the
picard group, where it is the obvious one,

Returning to the map v, we have Rom* @, = (l‘rmc since V/C
is proper, and Rle +« @ = Plc V/C is the relative picard functor (by
definition, cf, Sem.Bourb.$#232) viewed. as a sheaf on C. Since v/C
has a section, H'R! = Pic V/Pic C (cf. 1bid). Passing to the limit to
compute the stalks of R9r %@ and applying (2. 2), (5.1) (ii) one

finds
(l‘rm q=0
(6. 2) Mlr,@  =4Ricv/C q=1 (ignove p) .
0 q>1

Let i : ¢ —>C be the general point, A/c the Jacobian of the
general fibre U of w. If I' © Pic V/C denotes the subsheaf of divisor

classes whose image on U is of degree zero, we get exact sequence

0 —>F —>Dic V/C —3Z —0

(6- 3)

0 & € > ;i*A a0

where €.is concentrated at the points of C whose fibre for m is reducible,

and A is viewed as a sheaf onc. So HY(C, €) =0, g > 0, hence
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Hq(C 7) 22 HY(C, i,A), 9> 0. Now H'(C, Z) = 0 (cf. Section 1),
More0ver, since V/C has a section, the map H (C Pic V/C)—-yH (C Z)
obtained from the first sequence is surjective, Therefore

u'(c, pic v/C) x HY(C, i,A), whence by (6. 2)

(6.4) HAV, G, ) R EC, iyA) (ignore p

Applying (L 1);

(6.5) 0 —=pPic V/n—~=s H(V, /an)_.;)nl(c, 14A)) >0 . ((n, p) = ).

Note {6.6): The image of Pic V in HZ(V, fi) i amalogous to the part p
of the tflassical b, (second betti number) generated by the algebraic
cycles, hence Po =2 =P is interpreted by (6, 5) in terms of "locally
trivial principal homogeneous spaces' of A (cf." Section 2 and (0)).

The sequence (6. 5) may be viewed as a clarification of the results of
Igusa (I). In case V/C is a pencil of elliptic curves it is also closely
related to certain aspects of the beautiful paper of Kodaira (X). In
order to show that HZ(V ’ /}“h) has the expected value, it is at present
necessary to use explicit calculations of a somewhat devious nature

involving the group HY(C, i,A). These calculations may be found in
(1) and (0.

To get information about I-lq(V, #{n) for q > 2, it is more

convenient to analyze the Lera.y'spectral sequence
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(6. 7) HP(v, 2%, p)SHH(V, )

directly, or simplicity we make a further assumption on = , namely

that all the fibres are irreducible. Then the sheaf ¢ of (6, 3) is zero,

and one sees immecdiately that Rln * //Jn ’,&(i*A)n o iy (A)n' Moreover,
there is an injection (Pic v/C)/n — R 21 e By (6. 3),
(Pic V/C)/n. o Z/n, Examining the stalks of R%x s S, by means of

(2. 2) and (5.1) (i), one finds the injection is an isomorphism. Hence

[ azo

Q@ . = _ . ,
Z/n q=2 fibres of m irreducible)

\0 q> 2

Utilizing the duality for finite group schemes over c (cf. .Section 2)

and the autoduality of A, one finds the nonzero terms Elz"q of (6. 7) are

/n G ©) Q
. Z/n (Pic
. 'n n
Py Ps 4 1 : /:i
(6.9) 55 =E? = (A'k)nH (C, iz (f*)n) (A'k)n
/»ln(:'?ic C)n Z/n
Here the transgressions I-IOR1 —-—M-IZR0 and HOR2 —--}I-IZRl are zero,

This is seen by comparing (5. 9) with the known values of the ending
Hq(vn/}‘ln) (@ =1, 2) of (6. 7). For the second, use (6.5) and the so
called "Kummer sequence’ 0w, (A) ~— i A = i, i —0

which is exact if = has irreducible fibres.
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ERRATA

the v over the H is illegible

delete underlining except under remark and proof

adda X on middle line WXV, X

and a U as follows : U U
Since i carries, n.ot Since is carries
respect

B—s L

igi¥ 3% not iy % jui”

delete comma

that iy is exact

replace k over the arrow by an h
a presheaf
is flask

B = B/

Nakayama

(add bar)

delete A at end of line

A ~algebras

A -algebra

Hom K(E' C)

B&C —> C

5&5 ~ C XL

w%th reference to k , instead of the
Xf} .

R iy (@)

divisor, not division

its cohomology

0 g=1, 2

delete However , ,cocieecees
delete (ignore p)

add'the'' at the end of the line

V.V

W

p
U

\'



Page 113, line 7' Xi)

—

Page 113, line 5' replace U by /_7
line 2' Pic U

Page 119, line 10 divisor not division

Page 120, line 6! Let V/spec 4«

Page 124, line 10 ending
line 4' Ogg (0)

Page 94, line 7 For RY4aF, read R%d, F.
line 11 For the subscript p, read P

Page 118, line 2 For v, read p



