Condensed Mathematics: Motivation

Fangzhou Jin

July 26, 2023

Fangzhou Jin Condensed Mathematics: Motivation

• **Coherent duality**: introduced by Grothendieck (1963) as a generalization of Serre duality Hartshorne, *Residues and Duality*, 1966

Serre duality	Coherent duality	
regular (Cohen-Macaulay) schemes	singular schemes	
sheaves	complexes of sheaves	
dualizing sheaf	dualizing complex	

• Coherent duality is the prototype for several other duality theories

Other dualities

- Etale duality (SGA4-5)
- Verdier duality (1966), based on Borel-Moore (1960)
- \mathbb{A}^1 -homotopic duality (~00's)

Duality	Spaces	Category
coherent duality	Schemes	$D^b_{coh}(Qcoh(X))$
Etale duality	Schemes	$D^b(X_{et}, \Lambda)$
Verdier duality	Topological spaces	$D^b(X,\mathbb{Z})$
\mathbb{A}^1 -homotopy	Schemes	"Motivic categories"

- The duality theorems can be expressed in terms of the Grothendieck six functors formalism
 Six functors: f^{*}, Rf_{*}, Rf_!, f[!], ⊗^L, R<u>Hom</u>
- Similarities as well as major differences between coherent duality and other duality theories

Similarities between dualities

- **Poincaré duality**: for *f* smooth, *f*[!] differs from *f** by an "orientation sheaf"
- Atiyah duality: *Rf*_{*} for *f* smooth proper preserves dualizable objects
- Notion of dualizing objects and local (bi)duality
- Uniqueness of the dualizing object up to a ⊗-invertible object and a shift
- Dualizing objects are preserved by f[!]

Base change theorems:

- Coherent duality: very general base changes (e.g. flat base change)
- Other dualities: basically only smooth base change
- **Purity**: compare i^* and $i^!$ for *i* regular closed immersion
 - Coherent duality: Fundamental local isomorphism

$$i^*(-)\otimes^L (\det(N_i))^{-1}\simeq i^!(-)$$

• Other dualities: Purity transformation (Déglise-J.-Khan)

$$i^*(-)\otimes^L Th(N_i)^{-1} \rightarrow i^!(-)$$

not an isomorphism in general (see absolute purity)

In coherent duality, the functor *Rf*₁ does not exist
 Projection formula: for *f* proper,

 $Rf_*R\underline{Hom}(\mathcal{F}, f^!\mathcal{G}) \simeq R\underline{Hom}(Rf_*\mathcal{F}, \mathcal{G})$

 In coherent duality, no suitable subcategory of constructible objects preserved by 6 functors Part of these defects are salvaged by the theory of **condensed mathematics** (Clausen-Scholze) or equivalently that of **pyknotic objects** (Barwick-Haine):

- Enlarge the category of sheaves so that Rf! can be defined too
- Heavy use of (algebraized/categorical version of) analytic geometry
- Ideas close to Grothendieck's work on functional analysis in his early career